0000000000249305
AUTHOR
Javier López Cacheiro
The CCSD(T) model with Cholesky decomposition of orbital energy denominators
A new implementation of the coupled cluster singles and doubles with approximate triples correction method [CCSD(T)] using Cholesky decomposition of the orbital energy denominators is described. The new algorithm reduces the scaling of CCSD(T) from N-7 to N-6, where N is the number of orbitals. The Cholesky decomposition is carried out using simple analytical expressions that allow us to evaluate a priori the order in which the decomposition should be carried out and to obtain the relevant parts of the vectors whenever needed in the calculation. Several benchmarks have been carried out comparing the performance of the conventional and Cholesky CCSD(T) implementations. The Cholesky implement…
Computational and experimental investigation of intermolecular states and forces in the benzene-helium van der Waals complex
A study of the intermolecular potential-energy surface (IPS) and the intermolecular states of the perprotonated and perdeuterated benzene–He complex is reported. From a fit to ab initio data computed within the coupled cluster singles and doubles including connected triples model for 280 interaction geometries, an analytic IPS including two- to four-body atom–atom terms is obtained. This IPS, and two other Lennard-Jones atom–atom surfaces from the literature, are each employed in dynamically exact (within the rigid-monomer approximation) calculations of J = 0 intermolecular states of the isotopomers. Rotational constants and Raman-scattering coefficients for intermolecular vibrational trans…
Argon broadening of the 13CO R(0) and R(7) transitions in the fundamental band at temperatures between 80 and 297K: comparison between experiment and theory
We present measurements of Ar-broadening parameters for the R(0) and R(7) lines in the fundamental band of13CO at eight temperatures from 80 to 297 K. The broadening parameters are determined by simultaneous least-squares fitting of spectra recorded using a frequency stabilized diode laser spectrometer. The comparison of the broadening parameter values for R(7) derived at room temperature and different pressures from different line profiles shows that an empirical line profile, which takes into account narrowing effects (Dicke narrowing and absorber speed dependence) but neglects any correlation between collisions, is able to describe the observed lines with constant values of the narrowing…
Rovibrational structure of the Ar–CO complex based on a novel three-dimensional ab initio potential
The first three-dimensional ab initio intermolecular potential energy surface of the Ar–CO van der Waals complex is calculated using the coupled cluster singles and doubles including connected triples model and the augmented correlation-consistent polarized valence quadruple zeta (aug-cc-pVQZ) basis set extended with a (3s3p2d1f1g) set of midbond functions. The three-dimensional surface is averaged over the three lowest vibrational states of CO. Rovibrational energies are calculated up to 50 cm−1 above the ground state, thus enabling comprehensive comparison between theory and available experimental data as well as providing detailed guidance for future spectroscopic investigations of highe…
Theoretical absorption spectrum of the Ar–CO van der Waals complex
The three-dimensional intermolecular electric dipole moment surface of Ar–CO is calculated at the coupled cluster singles and doubles level of theory with the aug-cc-pVTZ basis set extended with a 3s3p2d1f1g set of midbond functions. Using the rovibrational energies and wave functions of our recent study [J. Chem. Phys. 117, 6562 (2002)], temperature-dependent spectral intensities are evaluated and compared to available experimental data. Based on the theoretical spectrum, alternative assignments of the experimentally observed lines in the fundamental band of CO around 2160 and 2166 cm−1 are suggested. Thomas.Bondo@uv.es