Three-dimensional imaging system with both improved lateral resolution and depth of field considering non-uniform system parameters
In this paper, we propose a new 3D passive image sensing and visualization technique to improve lateral resolution and depth of field (DoF) of integral imaging simultaneously. There is a resolution trade-off between lateral resolution and DoF in integral imaging. To overcome this issue, a large aperture and a small aperture can be used to record the elemental images to reduce the diffraction effect and extend the DoF, respectively. Therefore, in this paper, we utilize these two pickup concepts with a non-uniform camera array. To show the feasibility of our proposed method, we implement an optical experiment. For comparison in details, we calculate the peak signal-to-noise ratio (PSNR) as th…
Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels
Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…
GPU-accelerated integral imaging and full-parallax 3D display using stereo-plenoptic camera system
Abstract In this paper, we propose a novel approach to produce integral images ready to be displayed onto an integral-imaging monitor. Our main contribution is the use of commercial plenoptic camera, which is arranged in a stereo configuration. Our proposed set-up is able to record the radiance, spatial and angular, information simultaneously in each different stereo position. We illustrate our contribution by composing the point cloud from a pair of captured plenoptic images, and generate an integral image from the properly registered 3D information. We have exploited the graphics processing unit (GPU) acceleration in order to enhance the integral-image computation speed and efficiency. We…
Multidimensional Integral Imaging for Sensing, Visualization, and Recognition in Degraded Environments
An overview of multidimensional integral imaging for sensing, visualization, and recognition in degraded environments is presented. Applications include 3D visualization, photon starved imaging, material inspection, IR imaging, passive depth estimation, automated human gesture recognition, and long-range imaging.
Multidimensional Integral Imaging and Recognition in Degraded Environments
We present an overview of our work on multidimensional integral imaging systems. Integral-imaging-based multidimensional optical sensing and imaging will be described for 3-D visualization, seeing through obscurations, material inspection, augmented reality, biomedical applications, and object recognition from microscales to long-range imaging.