0000000000249591
AUTHOR
Marco Pistolesi
Mafic magma feeds degassing unrest at Vulcano Island, Italy
AbstractThe benign fuming activity of dormant volcanoes is punctuated by phases of escalating degassing activity that, on some occasions, ultimately prelude to eruption. However, understanding the drivers of such unrest is complicated by complex interplay between magmatic and hydrothermal processes. Some of the most comprehensively characterised degassing unrest have recently been observed at La Fossa cone on Vulcano Island, but whether or not these episodes involve new, volatile-rich ascending magma remains debated. Here, we use volcanic gas measurements, in combination with melt inclusion information, to propose that heightened sulphur dioxide flux during the intense fall 2021 La Fossa un…
Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.
Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrat…
Shallow magma dynamics at open-vent volcanoes tracked by coupled thermal and SO2 observations
Open-vent volcanic activity is typically sustained by ascent and degassing of shallow magma, in which the rate of magma supply to the upper feeding system largely exceeds the rate of magma eruption. Such unbalance between supplied (input) and erupted (output) magma rates is thought to result from steady, degassing-driven, convective magma overturning in a shallow conduit/feeding dyke. Here, we characterize shallow magma circulation at Stromboli volcano by combining independent observations of heat (Volcanic Radiative Power; via satellite images) and gas (SO2, via UV camera) output in a temporal interval (from August 1, 2018 to April 30, 2020) encompassing the summer 2019 effusive eruption a…
Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions
The mild activity of basaltic volcanoes is punctuated by violent explosive eruptions that occur without obvious precursors. Modelling the source processes of these sudden blasts is challenging. Here, we use two decades of ground deformation (tilt) records from Stromboli volcano to shed light, with unprecedented detail, on the short-term (minute-scale) conduit processes that drive such violent volcanic eruptions. We find that explosive eruptions, with source parameters spanning seven orders of magnitude, all share a common pre-blast ground inflation trend. We explain this exponential inflation using a model in which pressure build-up is caused by the rapid expansion of volatile-rich magma ri…
Reply to the “Comment by Delmelle et al. (2013) on ‘Scavenging of sulfur, halogens and trace metals by volcanic ash: The 2010 Eyjafjallajökull eruption’ by Bagnato et al. (2013)”
Abstract With this short communication we address the principal issues raised by Delmelle et al. (2014) in relation to the work of Bagnato et al. (2013) concerning the 2010 eruption of Eyjafjallajokull, Iceland. The principal conclusions of the work of Bagnato et al. (2013) include the observation that protracted gas-aerosol interaction in the plume promotes selective leaching of cation species from ash, with alkalis and Ca (and, among trace elements, Zn and Cu) being more rapidly re-mobilized (and transferred to soluble surface salts) relative to more inert elements (Mg, Ti). They also observed that adsorption onto ash surfaces is a major atmospheric sink of volcanic acidic gases, with 282…
Volcanic CO2 tracks the incubation period of basaltic paroxysms
Description
Tracking dynamics of magma migration in open-conduit systems
Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input r…
Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes
AbstractEffusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we…
The 15 March 2007 explosive crisis at Stromboli Volcano, Italy: assessing physical parameters through a multidisciplinary approach
Basaltic volcanoes are dominated by lava emission and mild explosive activity. Nevertheless, many basaltic systems exhibit, from time to time, poorly documented and little-understood violent explosions. A short-lived, multiblast explosive crisis (paroxysmal explosion) occurred on 15 March 2007 during an effusive eruptive crisis at Stromboli (Italy). The explosive crisis, which started at 20:38:14 UT, had a total duration of ∼5 min. The combined use of multiparametric data collected by the permanent instrumental networks (seismic, acoustic, and thermal records) and a field survey carried out immediately after the event enabled us to constrain the eruptive dynamics and quantify physical param…
Scavenging of sulphur, halogens and trace metals by volcanic ash: The 2010 Eyjafjallajökull eruption
The Eyjafjallajökull volcanic eruption in 2010 released considerable amounts of ash into the high troposphere-low stratosphere, leading to unprecedented disruption of air traffic over Europe. The role of such fine-grained tephra in adsorbing, and therefore rapidly scavenging, volcanogenic volatile elements such as sulphur and halogens, is explored here. We report on results (major to trace element chemistry) of leaching experiments carried out on 20 volcanic ash samples, taken from the deposits of the main phases of the eruption (March–April 2010), or directly while falling (5–9 May 2010). Ash leachate solutions from Eyjafjallajökull are dominated – among cations – by Ca and Na, and display…