0000000000249721
AUTHOR
Linda Mežule
Identifying Iron-Bearing Nanoparticle Precursor for Thermal Transformation into the Highly Active Hematite Photo-Fenton Catalyst
Funding: This reseach was funded by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/1/16/157).
Rapid Catalytic Water Disinfection from Earth Abundant Ca 2 Fe 2 O 5 Brownmillerite
Water disinfection is a crucial challenge for humanity. Approaches that are effective, cheap, environmentally friendly, and do not promote gene exchange between bacteria are urgently required. Strongly oxidizing radicals are highly promising to achieve this as they lead to bacterial activation at high efficiencies. However, sources to consistently generate these radicals are limited to high energy UV/H2O2 treatments requiring a large energy input. Here the use of abundant, cheap, brownmillerite (Ca2Fe2O5) is demonstrated as an efficient radical generation material under dark conditions, showing a seven order of magnitude decrease in bacterial concentration over 10 min. This decrease is attr…
Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates
Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when tolu…