Predicting an unstable tear film through artificial intelligence
AbstractDry eye disease is one of the most common ophthalmological complaints and is defined by a loss of tear film homeostasis. Establishing a diagnosis can be time-consuming, resource demanding and unpleasant for the patient. In this pilot study, we retrospectively included clinical data from 431 patients with dry eye disease examined in the Norwegian Dry Eye Clinic to evaluate how artificial intelligence algorithms perform on clinical data related to dry eye disease. The data was processed and subjected to numerous machine learning classification algorithms with the aim to predict decreased tear film break-up time. Moreover, feature selection techniques (information gain and information …