0000000000252785

AUTHOR

Jolanta ŚWiatek-kozłowska

0000-0002-0833-8263

Impact of α,β-dehydroamino acid residues on the binding abilities of di-, tri- and tetra-peptides

Insertion of a dehydroamino acid residue into a sequence of di-, tri- or tetra-peptide changed considerably the binding abilities of peptide ligands towards copper(II) ions. Potentiometric and spectroscopic (EPR, UV-VIS and CD) data have shown that the amide nitrogen of the dehydroamino acid residue is more effective in co-ordination than its parent analogue. In the case of the bulky ΔPhe residue also the (Z–E) isomerisation has a critical impact on the co-ordination equilibria in the system studied.

research product

Coordination ability of pentapeptides with two dehydro-amino acid residues inserted into their sequences.

The study on the binding ability of tested ligands have shown that insertion of two dehydro-amino acid residues into peptide sequences makes them more effective in metal ion binding than ligands with one dehydro-amino acid residue. The ligand with two Z(Delta)Phe residue form more stable complexes than his analogues with one Z(Delta)Phe residue. Interesting is this that position of Z(Delta)Phe residue in peptide chain have impact on Cu(II)-complexes formation.

research product

A novel approach for obtaining α,β-diaminophosphonates bearing structurally diverse side chains and their interactions with transition metal ions studied by ITC

Aminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing N′-substituted α,β-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains. Thermodynamic analysis of the chosen aminophosphonates at physiological pH proves that they serve as potent chelators for copper(II) ions and moderate chelators for nickel(II) ions.

research product

Histidine tracts in human transcription factors: insight into metal ion coordination ability

Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins—MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens part…

research product

Triplet of cysteines – Coordinational riddle?

Polythiol binding of metal ions plays crucial role in the proper functioning of cysteine-rich proteins that are responsible for metal homeostasis and defending processes against metal toxicity (including heavy metals detoxification). The coordination properties of cysteine residues involved in specific sequencional patterns in proteins (like those present in e.g. metallothioneins) are interesting not only from a chemical point of view but may also lead to a better understanding of the purpose and allocation of metal ions in various biomolecules. In this study, the interaction of Zn2+, Cd2+ and Ni2+ ions with four peptides containing cysteine triplet motif were studied by potentiometric and …

research product