0000000000253183

AUTHOR

P. Vallania

showing 18 related works from this author

Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

2011

Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the obser…

Point spread functionNuclear and High Energy PhysicsCosmic Rays Gamma Astronomy Extended Air ShowersAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodCosmic rayAstrophysics01 natural sciencesStandard deviationPhysics::GeophysicsRaggi cosmiciSettore FIS/05 - Astronomia E Astrofisicageomagnetic field0103 physical sciences010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsOmbra della lunaApparati di sciameDetectorSettore FIS/01 - Fisica SperimentaleMoon shadowAstronomyCosmic rayMagnetic fieldEarth's magnetic fieldAir shower13. Climate actionPhysics::Space Physics
researchProduct

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

2019

The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma-rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma-rays below 200 GeV have been observed by Fermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in the TeV range come from the HAWC observations, however, outside the solar minimum. The ARGO-YBJ data set has been used to search for sub-TeV/TeV gamma-rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitab…

Solar minimumSun: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayastroparticle physics; cosmic rays; gamma rays: general; Sun: general7. Clean energy01 natural sciencesAtmospherecosmic rays0103 physical sciencesgeneral [Sun]010303 astronomy & astrophysicsArgocosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysics010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyastroparticle physicAstronomy and Astrophysicsgamma rays: general13. Climate actionSpace and Planetary Scienceastroparticle physicsHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenageneral [gamma rays]
researchProduct

Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment

2011

ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-r…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaOggetti di tipo BL LacertaeFOS: Physical sciencesFluxAstrophysics01 natural sciences7. Clean energyindividual (Markarian 421) [BL Lacertae objects]Spectral lineGamma-rays Markarian 421 BL Lacertae Resistive Plate Chamberslaw.inventionlaw0103 physical sciencesRadiative transfer010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsMarkarian 421Settore FIS/01 - Fisica SperimentaleAstronomy and Astrophysicsgeneral [gamma ray]Synchrotron3. Good healthAir shower13. Climate actionSpace and Planetary ScienceDuty cycleSkyRaggi gammaSpectral energy distributionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

2010

In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsBL Lacertae objectSettore FIS/05 - Astronomia E AstrofisicaExtended Air showersSettore FIS/05 - Astronomia e Astrofisicageneral" ["gamma rays]BlazarBL Lacertae objects; Markarian 421; gamma rays; Extended Air showersCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral indexindividual (Markarian 421)" ["BL Lacertae objects]Markarian 421Settore FIS/01 - Fisica SperimentaleGamma rayindividual (Markarian 421) - gamma rays: observations [BL Lacertae objects]Astronomy and AstrophysicsAir showerCrab NebulaSpace and Planetary Sciencegamma rayIntergalactic travelAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment

2012

The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People's Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region $(5\textdiv{}200)\text{ }\text{ }\mathrm{TeV}$ is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium sp…

Extended Air Showers Cosmic Rays Gamma Ray sourcesNuclear and High Energy PhysicsProtonTIBETAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerchemistry.chemical_elementCosmic rayHELIUM SPECTRAAstrophysicsPROTONBayesian methodCASCADESSpectral lineSettore FIS/05 - Astronomia E AstrofisicaNuclear magnetic resonanceCosmic-ray observatoryHeliumPhysicsRange (particle radiation)ENERGY-RANGEBALLOON EXPERIMENTNUCLEISettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for Astrophysicslight component spectrumchemistryEnergy (signal processing)SYSTEM
researchProduct

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

2021

Full list of authors: Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Batista, R. Alves; Amati, L.; Amato, E.; Ambrosi, G.; Anguner, E. O.; Araudo, A.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Ashley, M.; Backes, M.; Balazs, C.; Balbo, M.; Balmaverde, B.; Baquero Larriva, A.; Martins, V. Barbosa; Barkov, M.; Baroncelli, L.; de Almeida, U. Barres; Barrio, J. A.; Batista, P-, I; Becerra Gonzalez, J.; Becherini, Y.; Beck, G.; Tjus, J. Becker; Belmont, R.; Benbow, W.; Bernardini, E.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V; Bi, B.; Biasuzzi, B.; Biland, A.; Bissaldi, …

Gamma ray AstronomyCherenkov Telescope ArrayaxionsMATÉRIA ESCURAredshift: dependenceAstronomyGamma ray experimentsgamma ray experimentsAstrophysics01 natural sciencesCosmologyObservatorycosmological model: parameter spacegamma ray experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsCherenkov telescopes ; IACT technique ; Gamma rays ; Cosmic raysnew physics4. EducationSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma-ray astronomyviolation: Lorentz3. Good healthobservatoryExtragalactic background lightastro-ph.COaxion-like particlesFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysicsgamma ray: propagationCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusAxionsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsinvariance: Lorentzjet: relativisticdark matter: halo0103 physical sciencesactive galactic nuclei; gamma ray experiments; axions; extragalactic magnetic fieldsAGNBlazarbackground010308 nuclear & particles physicsFísicaAstronomy and AstrophysicssensitivityCherenkov Telescope Arrayaxionextragalactic magnetic fieldsactive galactic nuclei[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]absorptionstatisticalBlazarsTelescopes
researchProduct

The Status of the ARGO Experiment at YBJ

2007

The ARGO-YBJ experiment, located at Yangbajing, Tibet, China, performed by a wide Sino-Italian collaboration, is designed to study cosmic rays, sub-TeV gamma ray sources and GeV Gamma Ray Burst (GRB) emission in the northern hemisphere, by means of detecting small size EAS (Extensive Air Shower) using a full coverage RPC (Resistive Plate Chamber) carpet. The central carpet of the detector is installed and put into operation to date, with 1900 m^2 of the carpet already operating since December 2004. With a trigger multiplicity of ≥60 hits, corresponding to a primary mode energy of 2 TeV, the angular resolution of EAS measurements is < 1 degree for showers with more than 500 recorded hits. We…

PhysicsNuclear and High Energy PhysicsCosmic rays gamma ray sources Gamma Ray Burst Extensive Air Shower Resistive Plate ChamberARGO-YBJAstrophysics::High Energy Astrophysical PhenomenaDetectorNorthern HemisphereGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsResistive plate chamberCosmic rayAstrophysicsAstronomia gammaAtomic and Molecular Physics and OpticsSciami estesiRaggi cosmiciAir showerGamma-ray burstArgo
researchProduct

Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

2012

We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statist…

Astrophysics::High Energy Astrophysical Phenomenageneral – pulsars: individual (MGRO J2019+37 [Gamma rays]FluxFOS: Physical sciencesAstrophysics01 natural sciencesPulsar wind nebulageneral – pulsar0103 physical sciencesMILAGRO010303 astronomy & astrophysicsDETECTORArgoPhysicsCALIBRATIONHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsMGRO J2031+41)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysicsindividual (MGRO J2019+37 MGRO J2031+41)PLANE3. Good healthMedium energyCrab Nebulagamma ray13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESJ2032+4130Milagrogamma rays; general – pulsars; individual (MGRO J2019+37 MGRO J2031+41)EMISSIONAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Results from the ULTRA experiment in the framework of the EUSO project

2005

The detection of Cerenkov light from EAS in a delayed coincidence with fluorescence light gives a strong signature to discriminate protons and neutrinos in cosmic rays. For this purpose, the ULTRA experiment has been designed with 2 detectors: a small EAS array (ETscope) and an UV optical device including wide field (Belenos) and narrow field (UVscope) Cerenkov light detectors. The array measures the shower size and the arrival direction of the incoming EAS, while the UV devices, pointing both to zenith and nadir, are used to determine the amount of direct and diffused coincident Cerenkov light. This information, provided for different diffusing surfaces, will be used to verify the possibil…

[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Physics::Space PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesHigh Energy Physics::ExperimentAstrophysics
researchProduct

Galactic Cosmic-Ray Anisotropy in the Northern hemisphere from the ARGO-YBJ Experiment during 2008-2012

2018

This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008-2012). This analysis extends previous work limited to the period from 2008 January to 2009 December, near the minimum of solar activity between cycles 23 and 24. With the new data sample, the period of solar cycle 24 from near minimum to maximum is investigated. A new method is used to improve the energy reconstruction, allowing us to cover a much wider energy range, from 4 to 520 TeV. Below 100 TeV, the anisotropy is dominated by two wide regions, the so-called “tail-in” and “loss-cone” features. At higher energies, a dramatic change…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray01 natural sciencescosmic rays0103 physical sciencesAnisotropy010303 astronomy & astrophysicsArgocosmic rayAstroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleNorthern HemisphereAstronomyastroparticle physicAstronomy and Astrophysicsastroparticle physics cosmic ray anysotropy argo-ybjAstronomy and Astrophysicastroparticle physics; cosmic rays; Astronomy and Astrophysics; Space and Planetary Scienceastroparticle physics13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct

Scaler mode technique for the ARGO-YBJ detector

2008

The ARGO-YBJ experiment has been designed to study the Extensive Air Showers with an energy threshold lower than that of the existing arrays by exploiting the high altitude location(4300 m a.s.l. in Tibet, P.R. China) and the full ground plane coverage. The lower energy limit of the detector (E $\sim$ 1 GeV) is reached by the scaler mode technique, i.e. recording the counting rate at fixed time intervals. At these energies, transient signals due to local (e.g. Forbush Decreases) and cosmological (e.g. Gamma Ray Bursts) phenomena are expected as a significant variation of the counting rate compared to the background. In this paper the performance of the ARGO-YBJ detector operating in scaler …

Gamma ray burstAstrophysics::High Energy Astrophysical PhenomenaCamere a piani resistiviFOS: Physical sciencesCosmic rayAstrophysicsRivelatori di sciami estesi01 natural sciencesRaggi cosmiciOpticsSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesLimit (music)010303 astronomy & astrophysicsArgoGround planegamma ray bursts cosmic rays extended air showersPhysics010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)DetectorMode (statistics)Astronomy and AstrophysicsSciami estesibusinessGamma-ray burstEnergy (signal processing)
researchProduct

Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

2012

Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is particularly effective in measuring the cosmic ray …

PhysicsNuclear and High Energy PhysicsAntiparticleAstrophysics::High Energy Astrophysical PhenomenaDark matterSettore FIS/01 - Fisica SperimentaleEarth-MoonCosmic raymagnetic spectrometerCosmic rayHigh Energy Physics - ExperimentNuclear physicsEarth's magnetic fieldAntiprotonAntimatterantiprotonContent (measure theory)Antiproton-Proton ratio Cosmic rays Extended Air ShowersAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

2009

The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are …

Nuclear and High Energy PhysicsCosmic rays Proton-air cross section gamma astronomyProtonAstrophysics::High Energy Astrophysical PhenomenaHadronCosmic rayCross Section01 natural sciencesCosmic RayHigh Energy Physics - ExperimentNuclear physics0103 physical sciencesMultiplicity (chemistry)010306 general physicsNuclear ExperimentZenithArgoPhysics010308 nuclear & particles physicsAttenuationDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysics3. Good healthHadronic InteractionHigh Energy Physics::ExperimentExtensive Air Showers
researchProduct

The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment

2015

The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space–time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1–10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower detectionFOS: Physical sciencesCosmic raySTRIPSCalorimetrySignallaw.inventionOpticsObservatorylawAir shower detection RPC detector CalorimetryCosmic-ray observatoryphysics.ins-detInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsResistive touchscreenbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Core (optical fiber)RPC detectorbusinessAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Detection of the Cherenkov light diffused by sea water with the ULTRA experiment

2007

The study of Ultra High Energy Cosmic Rays represents one of the most challenging topic in the Cosmic Rays and in the Astroparticle Physics fields. The interaction of primary particles with atmospheric nuclei produces a huge Extensive Air Shower together with isotropic emission of UV fluorescence light and highly directional Cherenkov photons, that are reflected/diffused isotropically by the impact on the Earth's surface or on high optical depth clouds. For space-based observations, detecting the reflected Cherenkov signal in a delayed coincidence with the fluorescence light improves the accuracy of the shower reconstruction in space and in particular the measurement of the shower maximum, …

[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]
researchProduct

Layout and performance of RPC used in the Argo-YBJ experiment

2006

The layout of the RPCs, used in the Argo-YBJ experiment to image with a high space-time granularity the atmospheric shower, is described in this paper. The detector has been assembled to provide both digital and analog informations in order to cover a wide particle density range with a time accuracy of 1 ns. The experimental results obtained operating the chambers in streamer mode at sea level with a standard gas mixture are presented. (c) 2006 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsRivelatori a gaPhysics::Instrumentation and DetectorsCosmic rays detectorAstrophysics::High Energy Astrophysical PhenomenaDetectorSettore FIS/01 - Fisica SperimentaleResistive Plate Chambers Cosmic Rays Extended Air ShowersCamere a piani resistiviRivelatori di raggi cosmiciSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeGas detectorRange (statistics)RPCGranularityParticle densityInstrumentationArgoRemote sensing
researchProduct