6533b7d5fe1ef96bd1263f5c
RESEARCH PRODUCT
Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants
The Cherenkov Telescope Array ConsortiumF. AceroA. AcharyyaR. AdamA. Aguasca-cabotI. AgudoA. Aguirre-santaellaJ. AlfaroR. AloisioN. ÁLvarez CrespoR. Alves BatistaL. AmatiE. AmatoG. AmbrosiE. O. AngünerC. AramoC. ArcaroT. ArmstrongK. AsanoY. AscasibarJ. AscherslebenM. BackesA. BaktashC. BalazsM. BalboJ. BalletA. Baquero LarrivaV. Barbosa MartinsU. Barres De AlmeidaJ. A. BarrioD. BastieriJ. R. BaxterJ. Becker TjusW. BenbowM. I. Bernardos-martínJ. BerneteA. BertiB. BertucciV. BeshleyP. BhattacharjeeS. BhattacharyyaA. BilandE. BissaldiJ. BiteauO. BlanchP. BordasE. BottaciniJ. BregeonR. BroseN. BucciantiniA. BulgarelliM. CapassoR. A. Capuzzo DolcettaP. CaraveoM. CardilloR. CarosiS. CasanovaE. CasconeF. CassolF. CatalaniM. CerrutiP. ChadwickS. ChatyA. ChenM. ChernyakovaA. ChiavassaJ. ChudobaC. Coimbra-araujoV. ConfortiJ. L. ContrerasA. CostaH. CostantiniP. CristofariR. CrockerG. D'amicoF. D'ammandoA. De AngelisV. De CaprioE. M. De Gouveia Dal PinoE. De Ona WilhelmiV. De SouzaC. DelgadoD. Della VolpeD. DepaoliT. Di GirolamoF. Di PierroR. Di TriaL. Di VenereS. DieboldJ. I. DjuvslandA. DoniniM. DoroR. D. C. Dos AnjosV. V. DwarkadasS. EineckeD. ElsässerG. EmeryC. EvoliD. Falceta-goncalvesE. FedorovaS. FeganG. FerrandE. FiandriniM. FilipovicV. FiorettiM. FioriL. FoffanoG. FontaineS. FukamiG. GalantiG. GalazV. GammaldiC. GasbarraA. GhalumyanG. GhirlandaM. GiarrussoG. GiavittoN. GigliettoF. GiordanoM. GirolettiA. GiulianiL. GiuntiN. GodinovicJ. Goulart CoelhoL. GréauxD. GreenM-h. GrondinO. GuetaS. GunjiT. HassanM. HellerS. Hernández-cadenaJ. HintonB. HnatykR. HnatykD. HoffmannW. HofmannJ. HolderD. HoranP. HorvathM. HrabovskyD. HrupecT. InadaF. IncardonaS. InoueK. IshioM. JamrozyP. JanecekI. Jiménez MartínezW. JinI. Jung-richardtJ. JurysekP. KaaretV. KarasU. KatzD. KerszbergB. KhélifiD. B. KiedaR. KissmannT. KleinerG. KlugeW. KluzniakJ. KnödlsederY. KobayashiK. KohriN. KominP. KorneckiH. KuboN. La PalombaraM. LáinezA. LamastraJ. LapingtonM. Lemoine-goumardJ. -P. LenainF. LeoneG. LetoF. LeuschnerE. LindforsI. LiodakisT. LohseS. LombardiF. LongoR. López-cotoM. López-moyaA. López-oramasS. LoporchioP. L. Luque-escamillaO. MaciasJ. MackeyP. MajumdarD. MandatM. ManganaroG. ManicòM. MarconiJ. MartíG. MartínezM. MartinezO. MartinezA. J. T. S. MelloS. MenchiariD. M. -A. MeyerS. MicanovicD. MiceliM. MiceliJ. MichalowskiT. MienerJ. M. MirandaA. MitchellB. ModeR. ModerskiL. MohrmannE. MolinaT. MontaruliD. MorcuendeG. MorlinoA. MorselliM. MosèE. MoulinR. MukherjeeK. MunariT. MurachA. NagaiS. NagatakiR. NemmenJ. NiemiecD. NietoM. Nievas RosilloM. NikolajukK. NishijimaK. NodaB. NovosyadlyjS. NozakiM. OhishiS. OhmY. OhtaniA. OkumuraB. OlmiR. A. OngM. OrientiR. OritoM. OrlandiniE. OrlandoS. OrlandoM. OstrowskiI. OyaF. R. PantaleoJ. M. ParedesB. PatricelliM. PecimotikaM. PeresanoJ. Pérez-romeroM. PersicO. PetrukG. PianoE. PietropaoloG. PirolaC. PittoriM. PohlG. PontiE. PrandiniG. PrincipeC. PriyadarshiE. PueschelG. PühlhoferM. L. PumoA. QuirrenbachR. RandoS. RazzaqueP. ReichherzerA. ReimerO. ReimerM. RenaudT. ReposeurM. RibóT. RichtlerJ. RicoF. RiegerM. RigoselliL. RiitanoV. RiziE. RoacheP. RomanoG. RomeoJ. RosadoG. RowellB. RudakI. SadehS. Safi-harbL. SahaS. SailerM. Sánchez-condeS. SarkarK. SataleckaF. G. SaturniA. SchererP. SchovánekF. SchusslerU. SchwankeS. ScuderiM. Seglar-arroyoO. SergijenkoM. ServillatR-y. ShangP. SharmaH. SiejkowskiV. SliusarA. SłowikowskaH. SolA. SpecoviusS. T. SpencerG. SpenglerA. StamerraS. StaničT. StareckiR. StarlingT. StolarczykL. A. Stuani PereiraY. SudaT. SuomijarviI. SushchH. TajimaP-h. T. TamS. J. TanakaF. TavecchioV. TestaW. TianL. TibaldoD. F. TorresN. TothillB. VallageP. VallaniaC. Van EldikJ. Van ScherpenbergJ. VandenbrouckeM. Vazquez AcostaM. VecchiS. VercelloneG. VernaA. VianaJ. VignattiV. VitaleV. VodebS. VorobiovT. VuillaumeS. J. WagnerR. WalterM. WhiteA. WierzcholskaM. WillD. WilliamsL. YangT. YoshidaT. YoshikoshiG. ZaharijasL. ZampieriD. ZavrtanikM. ZavrtanikV. I. ZhdanovM. ŽIvecsubject
Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signaturedescription
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a $\gamma$-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with $\mathcal{O}(100)$ hours of exposure per source.
year | journal | country | edition | language |
---|---|---|---|---|
2023-03-27 |