0000000000253208

AUTHOR

Dirk Hessinger

Independent ion migration in suspensions of strongly interacting charged colloidal spheres

We report on sytematic measurements of the low frequency conductivity in aequous supensions of highly charged colloidal spheres. System preparation in a closed tubing system results in precisely controlled number densities between 1E16/m3 and 1E19/m^3 (packing fractions between 1E-7 and 1E-2) and electrolyte concentrations between 1E-7 and 1E-3 mol/l. Due to long ranged Coulomb repulsion some of the systems show a pronounced fluid or crystalline order. Under deionized conditions we find s to depend linearily on the packing fraction with no detectable influence of the phase transitions. Further at constant packing fraction s increases sublinearily with increasing number of dissociable surfac…

research product

Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5 degrees CTheta35 degrees C and the particle number density n between 0.2 and 25 microm(-3) for the larger, respectively, 2.75 and 210 microm(-3) for the smaller of two investigated species. At fixed Theta the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Theta and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment f…

research product

Electrophoretic mobility of charged spheres

The electrophoretic mobility μ of charged 0.3 µm Polystyrene spheres suspended in water was measured over a wide range of salt concentrations c and packing fractions Φ. To observe isolated spheres at packing fractions Φ ≤ 2 × 10−7 a newly developed optical tweezing electrophoresis (OTE) apparatus was used. At deionised conditions μ=2.5 × 10−8 m2V−1s−1, it decreases further upon increasing the salt concentration c. Measurements at larger Φ generally show much larger μ and a qualitatively different dependence on c. At no added salt μ increases in the unordered state but a saturation at μ=6.8 × 10−8 m2V−1s−1 is observed, as the system develops fluid order. The fluid-crystal phase transition is…

research product