0000000000253209
AUTHOR
Mike A. Lund
Large surface magnetization in noncentrosymmetric antiferromagnets
Thin-film antiferromagnets (AFs) with Rashba spin-orbit coupling are theoretically investigated. We demonstrate that the relativistic Dzyaloshinskii-Moriya interaction (DMI) produces a large surface magnetization and a boundary-driven twist state in the antiferromagnetic N\' eel vector. We predict a magnetization on the order of $2.3\cdot 10^4$~A/m, which is comparable to the magnetization of ferromagnetic semiconductors. Importantly, the magnetization is characterized by ultra-fast terahertz dynamics and provides new approaches for efficiently probing and controlling the spin dynamics of AFs as well as detecting the antiferromagnetic DMI. Notably, the magnetization does not lead to any str…
Cross-sublattice Spin Pumping and Magnon Level Attraction in van der Waals Antiferromagnets
We theoretically study spin pumping from a layered van der Waals antiferromagnet in its canted ground state into an adjacent normal metal. We find that the resulting dc spin pumping current bears contributions along all spin directions. Our analysis allows for detecting intra- and cross-sublattice spin-mixing conductances via measuring the two in-plane spin current components. We further show that sublattice symmetry-breaking Gilbert damping can be realized via interface engineering and induces a dissipative coupling between the optical and acoustic magnon modes. This realizes magnon level attraction and exceptional points in the system. Furthermore, the dissipative coupling and cross-subla…
Spin pumping in noncollinear antiferromagnets
The ac spin pumping of noncollinear antiferromagnets is theoretically investigated. Starting from an effective action description of the spin system, we derive the Onsager coefficients connecting the spin pumping and spin-transfer torque associated with the dynamics of the SO(3)-valued antiferromagnetic order parameter. Our theory is applied to a kagome antiferromagnet resonantly driven by a uniform external magnetic field. We demonstrate that the reactive (dissipative) spin-transfer torque parameter can be extracted from the pumped ac spin current in-phase (in quadrature) with the driving field. Furthermore, we find that the three spin-wave bands of the kagome AF generate spin currents wit…