0000000000253381
AUTHOR
Roy H. Hamilton
Transcranial magnetic stimulation and neuroplasticity
We review past results and present novel data to illustrate different ways in which TMS can be used to study neural plasticity. Procedural learning during the serial reaction time task (SRTT) is used as a model of neural plasticity to illustrate the applications of TMS. These different applications of TMS represent principles of use that we believe are applicable to studies of cognitive neuroscience in general and exemplify the great potential of TMS in the study of brain and behavior. We review the use of TMS for (1) cortical output mapping using focal, single-pulse TMS; (2) identification of the mechanisms underlying neuroplasticity using paired-pulse TMS techniques; (3) enhancement of th…
Cortical plasticity associated with Braille learning
Blind subjects who learn to read Braille must acquire the ability to extract spatial information from subtle tactile stimuli. In order to accomplish this, neuroplastic changes appear to take place. During Braille learning, the sensorimotor cortical area devoted to the representation of the reading finger enlarges. This enlargement follows a two-step process that can be demonstrated with transcranial magnetic stimulation mapping and suggests initial unmasking of existing connections and eventual establishment of more stable structural changes. In addition, Braille learning appears to be associated with the recruitment of parts of the occipital, formerly `visual', cortex (V1 and V2) for tacti…
Neuroplasticity in the Adjustment to Blindness
Loss of vision due to injury to the eyes results in deafferentation of very large areas of the human cortex and poses striking demands on other sensory systems to adjust to blindness in a society that heavily relies on vision. Blind subjects need to extract crucial spatial information from touch and hearing. To accomplish this, plastic trans-modal changes appear to take place by which a larger area of the sensorimotor cortex is devoted to the representation of the reading finger in Braille readers, and parts of the former visual cortex are recruited for the processing of tactile and auditory information.
Digitalized transcranial electrical stimulation: A consensus statement.
Objective: Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in digital trials to overcome methodological barriers and increase equity of access. The study aims are to discuss the implementation of tES digital trials by performing a systematic scoping review and strategic process mapping, evaluate methodological aspects of tES digital trial designs, and provide Delphi-based recommendations for implementing digital trials using tES.Methods: …