0000000000254363

AUTHOR

T. Di Matteo

Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development

The scaling properties encompass in a simple analysis many of the volatility characteristics of financial markets. That is why we use them to probe the different degree of markets development. We empirically study the scaling properties of daily Foreign Exchange rates, Stock Market indices and fixed income instruments by using the generalized Hurst approach. We show that the scaling exponents are associated with characteristics of the specific markets and can be used to differentiate markets in their stage of development. The robustness of the results is tested by both Monte-Carlo studies and a computation of the scaling in the frequency-domain.

research product

Correlation filtering in financial time series

We apply a method to filter relevant information from the correlation coefficient matrix by extracting a network of relevant interactions. This method succeeds to generate networks with the same hierarchical structure of the Minimum Spanning Tree but containing a larger amount of links resulting in a richer network topology allowing loops and cliques. In Tumminello et al. \cite{TumminielloPNAS05}, we have shown that this method, applied to a financial portfolio of 100 stocks in the USA equity markets, is pretty efficient in filtering relevant information about the clustering of the system and its hierarchical structure both on the whole system and within each cluster. In particular, we have…

research product

Vaccinazione anti-influenzale dei pediatri nella stagione 2014-2015.

research product

A tool for filtering information in complex systems

We introduce a technique to filter out complex data-sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation based graphs giving filtered graphs which preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0) triangular loops and 4 element cliques are formed. The application of this filtering procedure to 100 stocks in the USA equity markets shows that such loops and cliqu…

research product

Correlation based networks of equity returns sampled at different time horizons

We investigate the planar maximally filtered graphs of the portfolio of the 300 most capitalized stocks traded at the New York Stock Exchange during the time period 2001-2003. Topological properties such as the average length of shortest paths, the betweenness and the degree are computed on different planar maximally filtered graphs generated by sampling the returns at different time horizons ranging from 5 min up to one trading day. This analysis confirms that the selected stocks compose a hierarchical system progressively structuring as the sampling time horizon increases. Finally, a cluster formation, associated to economic sectors, is quantitatively investigated.

research product

An interest rates cluster analysis

An empirical analysis of interest rates in money and capital markets is performed. We investigate a set of 34 different weekly interest rate time series during a time period of 16 years between 1982 and 1997. Our study is focused on the collective behavior of the stochastic fluctuations of these time-series which is investigated by using a clustering linkage procedure. Without any a priori assumption, we individuate a meaningful separation in 6 main clusters organized in a hierarchical structure.

research product

Using the Scaling Analysis to Characterize Financial Markets

We empirically analyze the scaling properties of daily Foreign Exchange rates, Stock Market indices and Bond futures across different financial markets. We study the scaling behaviour of the time series by using a generalized Hurst exponent approach. We verify the robustness of this approach and we compare the results with the scaling properties in the frequency-domain. We find evidence of deviations from the pure Brownian motion behavior. We show that these deviations are associated with characteristics of the specific markets and they can be, therefore, used to distinguish the different degrees of development of the markets.

research product

On the interplay between multiscaling and stocks dependence

We find a nonlinear dependence between an indicator of the degree of multiscaling of log-price time series of a stock and the average correlation of the stock with respect to the other stocks traded in the same market. This result is a robust stylized fact holding for different financial markets. We investigate this result conditional on the stocks' capitalization and on the kurtosis of stocks' log-returns in order to search for possible confounding effects. We show that a linear dependence with the logarithm of the capitalization and the logarithm of kurtosis does not explain the observed stylized fact, which we interpret as being originated from a deeper relationship.

research product