0000000000255050

AUTHOR

Baris Aykent

The Influence of the feedback control of the hexapod platform of the SAAM dynamic driving simulator on neuromuscular dynamics of the drivers

Multi sensorial cues (visual, auditory, haptic, inertial, vestibular, neuromuscular) [Ang2] play important roles to represent a proper sensation (objectively) and so a perception (subjectively as cognition) in driving simulators. Driving simulator aims at giving the sensation of driving as in a real case. For a similar situation, the driver has to react in the same way as in reality in terms of ‘self motion’. To enable this behavior, the driving simulator must enhance the virtual immersion of the subject in the driving situation. The subject has to perceive the motion of his own body in the virtual scene of the virtual car as he will have in a real car. For that reason, restituting the iner…

research product

Study of control command of dynamic platform for driving simulation and influence on simulator sickness

Simulation has been intensively involved nowadays in research and development for automotive industry. Driving simulators are one of those simulation techniques which are used to evaluate the prototypes for the vehicle dynamics and driving assistance systems. However with the driving simulator, there is a lock associated with its use. Because representing a permanent scenario as scale 1 is quite difficult. Because of that difficulty, motion/simulator sickness is an inevitably important topic to study.This thesis proposes to explore methods and tools to implement in static or dynamic simulators. In this implementation, studies of simulator sickness are conducted with objective measures (via …

research product