0000000000255103
AUTHOR
Mathieu Bonneau
Weeds sampling for map reconstruction: a Markov random field approach
In the past 15 years, there has been a growing interest for the study of the spatial repartition of weeds in crops, mainly because this is a prerequisite to herbicides use reduction. There has been a large variety of statistical methods developped for this problem ([5], [7], [10]). However, one common point of all of these methods is that they are based on in situ collection of data about weeds spatial repartition. A crucial problem is then to choose where, in the eld, data should be collected. Since exhaustive sampling of a eld is too costly, a lot of attention has been paid to the development of spatial sampling methods ([12], [4], [6] [9]). Classical spatial stochastic model of weeds cou…
Échantillonnage adaptatif optimal dans les champs de Markov, application à l’échantillonnage d’une espèce adventice
This work is divided into two parts: (i) the theoretical study of the problem of adaptive sampling in Markov Random Fields (MRF) and (ii) the modeling of the problem of weed sampling in a crop field and the design of adaptive sampling strategies for this problem. For the first point, we first modeled the problem of finding an optimal sampling strategy as a finite horizon Markov Decision Process (MDP). Then, we proposed a generic algorithm for computing an approximate solution to any finite horizon MDP with known model. This algorithm, called Least-Squared Dynamic Programming (LSDP), combines the concepts of dynamic programming and reinforcement learning. It was then adapted to compute adapt…