0000000000255357

AUTHOR

Jean-françois Delmas

CENTRAL LIMIT THEOREM FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS

Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. Motivated by the functional estimation of the density of the invariant probability measure which appears as the asymptotic distribution of the trait, we prove the consistence and the Gaussian fluctuations for a kernel estimator of this density based on late generations. In this setting, it is interesting to note that the distinction of the three regimes on the ergodic rate identified in a previous work (for fluctuations of average over large generations) disappears. This result is a first step to go beyond the thresh…

research product

Central limit theorem for bifurcating Markov chains under L 2 -ergodic conditions

Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for additive functionals of BMC under L 2-ergodic conditions with three different regimes. This completes the pointwise approach developed in a previous work. As application, we study the elementary case of symmetric bifurcating autoregressive process, which justify the non-trivial hypothesis considered on the kernel transition of the BMC. We illustrate in this example the phase transition observed in the fluctuations.

research product

CENTRAL LIMIT THEOREM FOR BIFURCATING MARKOV CHAINS

Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We first provide a central limit theorem for general additive functionals of BMC, and prove the existence of three regimes. This corresponds to a competition between the reproducing rate (each individual has two children) and the ergodicity rate for the evolution of the trait. This is in contrast with the work of Guyon (2007), where the considered additive functionals are sums of martingale increments, and only one regime appears. Our first result can be seen as a discrete time version, but with general trait evoluti…

research product