0000000000255493
AUTHOR
Hiroyuki Nakamura
Itinerant Electron Metamagnetism in η-Carbide-Type Compound Co3Mo3C
We report the magnetic properties of the cobalt molybdenum η-carbide-type compounds Co 3 Mo 3 C and Co 3 Mo 3 N. The magnetic susceptibility χ of Co 3 Mo 3 C shows a Curie–Weiss temperature dependence at high temperatures and a broad maximum at around 100 K, whereas that of Co 3 Mo 3 N shows a nearly temperature-independent enhanced Pauli paramagnetic behavior. The absence of a magnetic long-range order was confirmed by the nuclear magnetic resonance technique in both the compounds. As expected from the broad maximum of χ, we observed an itinerant electron metamagnetic transition at around 37 T in Co 3 Mo 3 C.
Effects of whole-body vertical shock-type vibration on human ability for fine manual control
The effects of vertical (z-axis) whole-body shock-type vibration on the ability for fine manual control were examined. The amplitudes and frequency of the shocks was varied, but a constant frequency-weighted acceleration of 1.25 m/s2 r.m.s. was maintained. The examination of the shock's effects was carried out using an experimental system that simulated the actual workplace of earth-moving machinery. Control was measured using a first-order pursuit tracking-test, in which a seated subject was asked to use both hands to direct a cursor on a monitor using a steering wheel. Although the magnitude of shocks (peak amplitude of 6-10 m/s2) and the number of shocks per unit time (shock cycle of 10-…