0000000000255668
AUTHOR
Sergey Korotov
Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle
We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-dimensional case.
Discrete Maximum Principle for Galerkin Finite Element Solutions to Parabolic Problems on Rectangular Meshes
One of the most important problems in numerical simulation is the preservation of qualitative properties of solutions of mathematical models. For problems of parabolic type, one of such properties is the maximum principle. In [5], Fujii analyzed the discrete analogue of the (continuous) maximum principle for the linear parabolic problems, and derived sufficient conditions guaranteeing its validity for the Galerkin finite element approximations built on simplicial meshes. In our paper, we present the sufficient conditions for the validity of the discrete maximum principle for the case of bilinear finite element space approximations on rectangular meshes.
Acute Type Refinements of Tetrahedral Partitions of Polyhedral Domains
We present a new technique to perform refinements on acute type tetrahedral partitions of a polyhedral domain, provided that the center of the circumscribed sphere around each tetrahedron belongs to the tetrahedron. The resulting family of partitions is of acute type; thus, all the tetrahedra satisfy the maximum angle condition. Both these properties are highly desirable in finite element analysis.
Finite element analysis of varitional crimes for a quasilinear elliptic problem in 3D
We examine a finite element approximation of a quasilinear boundary value elliptic problem in a three-dimensional bounded convex domain with a smooth boundary. The domain is approximated by a polyhedron and a numerical integration is taken into account. We apply linear tetrahedral finite elements and prove the convergence of approximate solutions on polyhedral domains in the $W^1_2$ -norm to the true solution without any additional regularity assumptions.