0000000000255693
AUTHOR
Dinee C. Simpson
Regulatory Network Of Angiogenesis Gene Expression During Post-Pneumonectomy Compensatory Growth
Selective Laser Photocoagulation Manipulates Blood Flow Dynamics in Microcirculation
Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane.
The relative contribution of blood flow to vessel structure remains a fundamental question in biology. To define the influence of intravascular flow fields, we studied tissue islands--here defined as intravascular pillars--in the chick chorioallantoic membrane. Pillars comprised 0.02 to 0.5% of the vascular system in 2-dimensional projection and were predominantly observed at vessel bifurcations. The bifurcation angle was generally inversely related to the length of the pillar (R = -0.47, P .05). 3-dimensional computational flow simulations indicated that the intravascular pillars were located in regions of low shear stress. Both wide-angle and acute-angle models mapped the pillars to regio…
Intravascular pillars and pruning in the extraembryonic vessels of chick embryos.
To investigate the local mechanical forces associated with intravascular pillars and vessel pruning, we studied the conducting vessels in the extraembryonic circulation of the chick embryo. During the development days 13-17, intravascular pillars and blood flow parameters were identified using fluorescent vascular tracers and digital time-series video reconstructions. The geometry of selected vessels was confirmed by corrosion casting and scanning electron microscopy. Computational simulations of pruning vessels suggested that serial pillars form along pre-existing velocity streamlines; blood pressure demonstrated no obvious spatial relationship with the intravascular pillars. Modeling a Re…
Mechanical Evidence Of Microstructural Remodeling During Post-Pneumonectomy Compensatory Lung Growth
Cross-circulation and Cell Distribution Kinetics in Parabiotic Mice
Blood-borne nucleated cells participate not only in inflammation, but in tissue repair and regeneration. Because progenitor and stem cell populations have a low concentration in the blood, the circulation kinetics and tissue distribution of these cells is largely unknown. An important approach to tracking cell lineage is the use of fluorescent tracers and parabiotic models of cross-circulation. Here, we investigated the cross-circulation and cell distribution kinetics of C57/B6 GFP(+)/wild-type parabionts. Flow cytometry analysis of the peripheral blood after parabiosis demonstrated no evidence for a "parabiotic barrier" based on cell size or surface characterstics; all peripheral blood cel…