0000000000255738

AUTHOR

Alexander Bleile

Development of an array of calorimetric low-temperature detectors for heavy ion physics

Abstract Calorimetric low-temperature detectors have been investigated for several applications in heavy ion physics within the last 15 years. The detectors used consist of sapphire absorbers of 2×3×0.33 mm 3 and superconducting aluminum transition edge sensors operated at T ≈1.5 K. To fully exploit the potential of such detectors for heavy ion physics, a detector array is developed. For this purpose, a specially adapted 4 He bath cryostat with a base temperature of 1.2 K, which allows an active detector area of 30×80 mm 2 , was constructed. As different detectors have different transition temperatures, each detector pixel has to be adjusted to its specific working point and temperature sta…

research product

First application of calorimetric low-temperature detectors in accelerator mass spectrometry

Abstract For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4–9×10−3, depending on the experimental co…

research product

Noise analysis for calorimetric low-temperature detectors for heavy ions

The energy resolution of calorimetric low-temperature detectors for heavy ions has been analyzed. It is shown that the contribution of base line noise is small. The energy resolution is determined by intrinsic fluctuations of the detector signal. An incomplete energy thermalization during the stopping process of the heavy ion, the dependence of signal shape on impact position and fluctuations of the Al-TES thermometer response are considered as main sources of detector line broadening. Test measurements with 5 MeV α-particles are presented.

research product

Low-temperature X-ray detectors for precise Lamb shift measurements on hydrogen-like heavy ions

The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb"elds, not accessible otherwise. For the investigation of the Lyman-a transitions in 208Pb81‘ or 238U91‘ with su$cient accuracy a high resolving calorimetric detector for hard X-rays (E)100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high Z material to optimize the absorption e$ciency. The detectors are housed in a specially designed 3He/4He dilution refrigerator with a side arm which "ts to the geometry of the internal target of the storage ring ESR at GSI Darmstadt. T…

research product

Precise determination of the 1s Lamb Shift in hydrogen-like heavy ions at the ESR storage ring using microcalorimeters

The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the precision of such experiments, the new detector concept of microcalorimeters, which detect the temperature change of an absorber after an incoming particle or photon has deposited its energy as heat, is now exploited. The microcalorimeters for x-rays used in these experiments consist of arrays of silicon thermometers and x-ray absorbers made of high-Z material. With such detectors, a relative energy resolution of about 1 per mille is obtained in the energy regime of 50–100 keV. Two successful measu…

research product

Precise determination of the 1s Lamb shift in hydrogen-like lead and gold using microcalorimeters

Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with suffcient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb Shift in highly-charged very heavy ions. The 1s Lamb Shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard X-rays. The results of (260 +- 22) eV for lead and (208 +- 13) eV for gold are within error bars in good agreement with theoretical predictions. For hydrogen-like lead, this represents the most accurate determination of the 1s Lam…

research product

Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA curren…

research product

High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40–70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. T…

research product