0000000000256089
AUTHOR
Maria Elena Herrero
Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks
Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an …
Metabolic detoxification: implications for thresholds.
The fact that chemical carcinogenesis involves single, isolated, essentially irreversible molecular events as discrete steps, several of which must occur in a row to finally culminate in the development of a malignancy, rather suggests that an absolute threshold for chemical carcinogens may not exist. However, practical thresholds may exist due to saturable pathways involved in the metabolic processing, especially in the metabolic inactivation, of such compounds. An important example for such a pathway is the enzymatic hydrolysis of epoxides via epoxide hydrolases, a group of enzymes for which the catalytic mechanism has recently been established. These enzymes convert their substrates via…
Sequestration of biological reactive intermediates by trapping as covalent enzyme-intermediate complex
One important class of biological reactive intermediates arising in the course of human xenobiotic metabolism are arene and alkene oxides. The major safeguard against the potential genotoxic effects of these compounds is the microsomal epoxide hydrolase (mEH). This enzyme has a broad substrate specificity but--on the first sight--seems to be inadequately suited for this protection task due to its low turnover number with most of its substrates. The recent progress in the understanding of the mechanism of enzymatic epoxide hydrolysis has shed new light on this apparent dilemma: Epoxide hydrolases convert their substrates via the intermediate formation of a covalent enzyme-substrate complex, …