0000000000256096

AUTHOR

Agnieszka Mierczynska-vasilev

showing 3 related works from this author

Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small 25/2020)

2020

BiomaterialsMaterials scienceChemical engineeringNanoparticleGeneral Materials ScienceProtein CoronaGeneral ChemistryBiotechnologyProtein adsorptionSmall
researchProduct

Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses.

2019

The nature of the protein corona forming on biomaterial surfaces can affect the performance of implanted devices. This study investigated the role of surface chemistry and wettability on human serum-derived protein corona formation on biomaterial surfaces and the subsequent effects on the cellular innate immune response. Plasma polymerization, a substrate-independent technique, was employed to create nanothin coatings with four specific chemical functionalities and a spectrum of surface charges and wettability. The amount and type of protein adsorbed was strongly influenced by surface chemistry and wettability but did not show any dependence on surface charge. An enhanced adsorption of the …

Materials scienceTHP-1 Cellsplasma polymerizationwettabilityBiomaterial Surface ModificationsProtein CoronaBiocompatible Materials02 engineering and technology010402 general chemistry01 natural sciencesAdsorptionHumansGeneral Materials ScienceSurface chargeOpsoninInnate immune systemMacrophagesbiomaterialBiomaterialBlood Proteins021001 nanoscience & nanotechnologyhuman serumprotein adsorptionimmune responsesImmunity Innate0104 chemical sciencesBiophysicsProtein CoronaAdsorption0210 nano-technologyHydrophobic and Hydrophilic InteractionsProtein adsorptionACS applied materialsinterfaces
researchProduct

The Influence of Nanoparticle Shape on Protein Corona Formation

2020

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod‐shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y ‐dimension, one being a sphere and the other a …

rod shapeSurface Propertiesnanoparticle shapeNanoparticleProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsCorona (optical phenomenon)protein coronaAdsorptionBlood serumDrug Delivery SystemsGeneral Materials ScienceChemistryAlbuminsphere shapeGeneral ChemistryMesoporous silica021001 nanoscience & nanotechnologySilicon Dioxideprotein adsorption0104 chemical sciences3. Good healthBiophysicsbio-nanoparticle interactionsNanoparticlesProtein Corona0210 nano-technologymesoporous nanoparticlesBiotechnologyProtein adsorption
researchProduct