0000000000256126
AUTHOR
Michael Förster
An experimental study of the role of partial melts of sediments versus mantle melts in the sources of potassic magmatism
Abstract Potassium-rich lavas with K/Na of >2 are common in orogenic and anorogenic intraplate magmatic provinces. However, in the primitive mantle, the concentration of Na exceeds that of K by 10 times. The source of K-rich lavas thus needs to be either K-enriched or Na-depleted to account for high K/Na ratios. The geochemical and isotopic compositions of high 87Sr/86Sr post-collisional lavas show that their mantle source contains a recycled crustal component. These highly K-enriched lavas with crustal like trace element patterns are termed “orogenic lamproites” and are compositionally distinct from K-rich “anorogenic lamproites” that show lower 87Sr/86Sr and a trace element pattern that r…
Melting phlogopite-rich MARID: Lamproites and the role of alkalis in olivine-liquid Ni-partitioning
Abstract In this study, we show how veined lithospheric mantle is involved in the genesis of ultrapotassic magmatism in cratonic settings. We conducted high pressure experiments to simulate vein + wall rock melting within the Earth's lithospheric mantle by reacting assemblages of harzburgite and phlogopite-rich hydrous mantle xenoliths. These comprised a mica-, amphibole-, rutile-, ilmenite-, diopside (MARID) assemblage at 3–5 GPa and 1325–1450 °C. Melting of the MARID assemblages results in infiltration of melt through the harzburgite, leading to its chemical alteration. At 3 and 4 GPa, melts are high in K2O (> 9 wt%) with K2O/Na2O > > 2 comparable to anorogenic lamproites. Higher pressure…
The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years
Abstract Laminated sediment records from several maar lakes and dry maar lakes of the Eifel (Germany) reveal the history of climate, weather, environment, vegetation, and land use in central Europe during the last 60,000 years. The time series of the last 30,000 years is based on a continuous varve counted chronology, the MIS3 section is tuned to the Greenland ice — both with independent age control from 14C dates. Total carbon, pollen and plant macrofossils are used to synthesize a vegetation-stack, which is used together with the stacks from seasonal varve formation, flood layers, eolian dust content and volcanic tephra layers to define Landscape Evolution Zones (LEZ). LEZ 1 encompasses t…
Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle
The generation of strongly potassic melts in the mantle requires the presence of phlogopite in the melting assemblage, while isotopic and trace element analyses of ultrapotassic rocks frequently indicate the involvement of subducted crustal lithologies in the source. However, phlogopite-free experiments that focus on melting of sedimentary rocks and subsequent hybridization with mantle rocks at pressures of 1&ndash
Late Pleistocene Eifel eruptions: insights from clinopyroxene and glass geochemistry of tephra layers from Eifel Laminated Sediment Archive sediment cores
Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds.
We demonstrate the formation of highly saline mantle fluids by the reaction of subducted sediment with peridotite.
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
The monitoring of soil moisture content (SMC) at very high spatial resolution (10m) using unmanned aerial systems (UAS) is of high interest for precision agriculture and the validation of large scale SMC products. Data-driven approaches are the most common method to retrieve SMC with UAS-borne data at water limited sites over non-disturbed agricultural crops. A major disadvantage of data-driven algorithms is the limited transferability in space and time and the need of a high number of ground reference samples. Physically-based approaches are less dependent on the amount of samples and are transferable in space and time. This study explores the potential of (1) a hybrid method targeting the…
The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years
Abstract Tephra layers of individual volcanic eruptions are traced in several cores from Eifel maar lakes, drilled between 1998 and 2014 by the Eifel Laminated Sediment Archive (ELSA). All sediment cores are dated by 14C and tuned to the Greenland interstadial succession. Tephra layers were characterized by the petrographic composition of basement rock fragments, glass shards and characteristic volcanic minerals. 10 marker tephra, including the well-established Laacher See Tephra and Dumpelmaar Tephra can be identified in the cores spanning the last glacial cycle. Older cores down to the beginning of the Elsterian, show numerous tephra sourced from Strombolian and phreatomagmatic eruptions,…
Partitioning of nitrogen during melting and recycling in subduction zones and the evolution of atmospheric nitrogen
Abstract The subduction of sediment connects the surface nitrogen cycle to that of the deep Earth. To understand the evolution of nitrogen in the atmosphere, the behavior of nitrogen during the subduction and melting of subducted sediments has to be estimated. This study presents high-pressure experimental measurements of the partitioning of nitrogen during the melting of sediments at sub-arc depths. For quantitative analysis of nitrogen in minerals and glasses, we calibrated the electron probe micro-analyzer on synthetic ammonium feldspar to measure nitrogen concentrations as low as 500 μg g−1. Nitrogen abundances in melt and mica are used together with mass balance calculations to determi…
Melting and dynamic metasomatism of mixed harzburgite + glimmerite mantle source: Implications for the genesis of orogenic potassic magmas
Abstract Tectonically young, orogenic settings are commonly the sites of post-collisional silica-rich ultrapotassic magmas with extreme K2O-contents of up to 9 wt% and K2O/Na2O > 2. Many experimental studies investigating the generation of these melts have concentrated on melting of homogenous phlogopite bearing peridotites, whereas geochemical signatures indicate the involvement of at least two types of source rocks: ultra-depleted and K and trace elements-enriched ones. We report the results of melting experiments at 1–2 GPa of mixed glimmerite and harzburgite, in which these rock types make up two halves each capsule. Melting begins in the glimmerite, and its metasomatic effects on the h…