The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films
Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …
Real-time manipulation of gold nanoparticles inside a scanning electron microscope
Abstract The forces needed to overcome static friction and move 150 nm diameter Au nanoparticles on an oxidized Si substrate were measured in Normal and Shear oscillation modes inside a scanning electron microscope (SEM) in real time. The experimental setup consisted of a quartz tuning fork (QTF) mounted onto a high-precision 3D nanomanipulator used with a glued silicon or tungsten tip as a force sensor. Static friction was found to range from tens of nN to several hundred nN. Large variations in static friction values were related to differences in particle shape. Kinetic friction tended to be close to the detection limit and in most cases did not exceed several nN. The influence of therma…