0000000000256193

AUTHOR

Mark Keil

0000-0002-1643-8256

showing 3 related works from this author

Stern-Gerlach splitting of low-energy ion beams

2019

We present a feasibility study with several magnetic field configurations for creating spin-dependent forces that can split a low-energy ion beam by the Stern-Gerlach effect. To the best of our knowledge, coherent spin-splittings of charged particles have yet to be realised. Our proposal is based on ion source parameters taken from a recent experiment that demonstrated single-ion implantation from a high-brightness ion source combined with a radio-frequency Paul trap. The inhomogeneous magnetic fields can be created by permanently magnetised microstructures or from current-carrying wires with sizes in the micron range, such as those recently used in a successful implementation of the Stern-…

PhysicsQuantum PhysicsStern–Gerlach experimentIon beamAtomic Physics (physics.atom-ph)Institut für Physik und AstronomieGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesIon sourceCharged particlePhysics - Atomic Physics010305 fluids & plasmasMagnetic fieldIonsymbols.namesake0103 physical sciencessymbolsddc:530Ion trapAtomic physics010306 general physicsQuantum Physics (quant-ph)Lorentz force
researchProduct

Strategies for Heading Off is Project Failure

2000

Although investment in information technology and information systems continues to increase, projects continue to fail. As a result, IS projects, particularly software projects, are perceived as high risk. By categorizing types of risk, this article helps IS professionals and all project sponsors to identify classes of risk and choose the appropriate managerial behavior to mitigate each of them.

Firm strategyHeading (navigation)Process managementbusiness.industryProject sponsorshipInformation technologyLibrary and Information SciencesInvestment (macroeconomics)Computer Science ApplicationsManagementSoftwareInformation systembusinessRisk managementInformation SystemsInformation Systems Management
researchProduct

Trapping cold atoms using surface-grown carbon nanotubes

2008

We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.

Surface (mathematics)PhysicsCondensed Matter::Quantum GasesNanotubeFOS: Physical sciencesCarbon nanotubeDielectricTrappingAtomic and Molecular Physics and Opticslaw.inventionConductorCarbon nanotube quantum dotOptical properties of carbon nanotubesCondensed Matter - Other Condensed MatterlawChemical physicsAtomic and Molecular PhysicsPhysics::Atomic PhysicsAtomic physicsand Opticsatomchips carbon nanotubes ultra-cold atoms atom optics magnetic trapping decoherence trap loss Casimir-Polder Gross-PitaevskiiOther Condensed Matter (cond-mat.other)
researchProduct