0000000000256197

AUTHOR

Ron Folman

0000-0002-3449-2563

showing 6 related works from this author

Stern-Gerlach splitting of low-energy ion beams

2019

We present a feasibility study with several magnetic field configurations for creating spin-dependent forces that can split a low-energy ion beam by the Stern-Gerlach effect. To the best of our knowledge, coherent spin-splittings of charged particles have yet to be realised. Our proposal is based on ion source parameters taken from a recent experiment that demonstrated single-ion implantation from a high-brightness ion source combined with a radio-frequency Paul trap. The inhomogeneous magnetic fields can be created by permanently magnetised microstructures or from current-carrying wires with sizes in the micron range, such as those recently used in a successful implementation of the Stern-…

PhysicsQuantum PhysicsStern–Gerlach experimentIon beamAtomic Physics (physics.atom-ph)Institut für Physik und AstronomieGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesIon sourceCharged particlePhysics - Atomic Physics010305 fluids & plasmasMagnetic fieldIonsymbols.namesake0103 physical sciencessymbolsddc:530Ion trapAtomic physics010306 general physicsQuantum Physics (quant-ph)Lorentz force
researchProduct

Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

2011

We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudin…

PhysicsQuantum PhysicsCondensed matter physicsmedia_common.quotation_subjectFOS: Physical sciencesFrustrationQuantum simulatorAtomic and Molecular Physics and OpticsSpin magnetic momentIonMagnetic fieldPlanarElectromagnetic coilIon trapQuantum Physics (quant-ph)media_common
researchProduct

Trapping cold atoms using surface-grown carbon nanotubes

2008

We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.

Surface (mathematics)PhysicsCondensed Matter::Quantum GasesNanotubeFOS: Physical sciencesCarbon nanotubeDielectricTrappingAtomic and Molecular Physics and Opticslaw.inventionConductorCarbon nanotube quantum dotOptical properties of carbon nanotubesCondensed Matter - Other Condensed MatterlawChemical physicsAtomic and Molecular PhysicsPhysics::Atomic PhysicsAtomic physicsand Opticsatomchips carbon nanotubes ultra-cold atoms atom optics magnetic trapping decoherence trap loss Casimir-Polder Gross-PitaevskiiOther Condensed Matter (cond-mat.other)
researchProduct

Color centers in diamond as novel probes of superconductivity

2018

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

010302 applied physicsSuperconductivityMaterials scienceField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerCondensed Matter - SuperconductivityDiamondFOS: Physical sciencesNanotechnologyengineering.materialCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSuperconductivity (cond-mat.supr-con)Magnetic imaginglawHigh pressure0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineering010306 general physicsImage resolution
researchProduct

Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

2013

The ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group.-- arXiv:1302.3415

Top quarkPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALElectron–positron annihilationPrecision measurements at W-pair energiesWW bosonGeneral Physics and AstronomyCOLOR DIPOLE MODEL01 natural sciences7. Clean energyZZ bosonMathematical SciencesHigh Energy Physics - Experimentelectroweak interactionsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)electron-positron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FERMION-LOOP SCHEMEANOMALOUS MAGNETIC-MOMENTOF-MASS ENERGIES; TOP-QUARK MASS; CARLO EVENT GENERATOR; HADRONIC Z-DECAYS; INVARIANT YFS EXPONENTIATION; ANOMALOUS MAGNETIC-MOMENT; (UN)STABLE W+W-PRODUCTION; FERMION-LOOP SCHEME; COLOR DIPOLE MODEL; LEADING ORDER QCDeffective coupling constantsBosonPhysicsOPALPhysicsElectroweak interactionSettore FIS/01 - Fisica Sperimentalehep-phPrecision measurements at WW-pair energiesRadiative correctionsALEPHNuclear & Particles PhysicsLARGE ELECTRON POSITRON COLLIDER3. Good healthRadiative correctionHigh Energy Physics - PhenomenologyOF-MASS ENERGIESDecays of heavy intermediate gauge bosonsINVARIANT YFS EXPONENTIATIONPrecision measurements at W-pair energieFermion-antifermion productionL3Physical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPARTICLE PHYSICSFísica nuclearProduction (computer science)decays of heavy intermediate gauge bosons; neutral weak current; w boson; tests of the standard model; precision measurements at w-pair energies; fermion-antifermion production; top quark; electron-positron physics; electroweak interactions; effective coupling constants; higgs boson; z boson; radiative correctionsFermion–antifermion productionELECTROWEAK INTERACTIONTests of the Standard ModelParticle Physics - ExperimentParticle physicsZ bosonElectron-positron physicElectroweak interactionsLEADING ORDER QCDHiggs boson(UN)STABLE W+W-PRODUCTIONFOS: Physical sciencesdecays of heavy intermediate gauge bosonsddc:500.2Decays of heavy intermediate gauge bosonEffective coupling constantPartícules (Física nuclear)Standard ModelNuclear physicsPhysics and Astronomy (all)Neutral weak current0103 physical sciencesddc:530010306 general physicsTOP-QUARK MASSEffective coupling constantsDELPHIElectron–positron physicshep-ex010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyCARLO EVENT GENERATORTop quarkradiative correctionsElectron-positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion-antifermion production; Precision measurements at W-pair energies; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs bosonHADRONIC Z-DECAYSCol·lisions (Física nuclear)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Experimental High Energy PhysicsLarge Electron–Positron ColliderW bosonHigh Energy Physics::ExperimentElectron-positron physics
researchProduct

Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond

2018

Understanding the mechanisms behind high-$T_{c}$ Type-II superconductors (SC) is still an open task in condensed matter physics. One way to gain further insight into the microscopic mechanisms leading to superconductivity is to study the magnetic properties of the SC in detail, for example by studying the properties of vortices and their dynamics. In this work we describe a new method of wide-field imaging magnetometry using nitrogen-vacancy (NV) centers in diamond to image vortices in an yttrium barium copper oxide (YBCO) thin film. We demonstrate quantitative determination of the magnetic field strength of the vortex stray field, the observation of vortex patterns for different cooling fi…

Magnetic domainMagnetismFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyElectronengineering.material01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials ScienceCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsPhysicsSuperconductivityCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsCondensed Matter - SuperconductivitySkyrmionDiamond021001 nanoscience & nanotechnologyMagnetic fieldengineering0210 nano-technologyPhysical Review Applied
researchProduct