0000000000256485

AUTHOR

Robert C. Münch

showing 3 related works from this author

A Library-Based Screening Strategy for the Identification of DARPins as Ligands for Receptor-Targeted AAV and Lentiviral Vectors

2021

Delivering genes selectively to the therapeutically relevant cell type is among the prime goals of vector development. Here, we present a high-throughput selection and screening process that identifies designed ankyrin repeat proteins (DARPins) optimally suited for receptor-targeted gene delivery using adeno-associated viral (AAV) and lentiviral (LV) vectors. In particular, the process includes expression, purification, and in situ biotinylation of the extracellular domains of target receptors as Fc fusion proteins in mammalian cells and the selection of high-affinity binders by ribosome display from DARPin libraries each covering more than 1012 variants. This way, DARPins specific for the …

0301 basic medicinelcsh:QH426-470610 Medicine & healthComputational biologyQH426-470BiologyGene deliveryArticleViral vector03 medical and health sciences0302 clinical medicine1311 GeneticsLV10019 Department of Biochemistry1312 Molecular BiologyGeneticsVector (molecular biology)lcsh:QH573-671Molecular Biology030304 developmental biology0303 health sciencesQH573-671lcsh:Cytology10179 Institute of Medical Microbiologyribosome displayCorrectionAAVFusion proteinlcsh:GeneticsCD105NKp46DARPin030104 developmental biologyGluA4DARPin1313 Molecular Medicine030220 oncology & carcinogenesisBiotinylationRibosome displayreceptor-targeted viral vectors570 Life sciences; biologyMolecular MedicineAnkyrin repeatCytologyMolecular Therapy - Methods & Clinical Development
researchProduct

Exclusive transduction of human CD4+ T Cells upon systemic delivery of CD4-targeted lentiviral vectors

2015

Abstract Playing a central role in both innate and adaptive immunity, CD4+ T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4+ cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4+ but not CD4− cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood …

CD4-Positive T-Lymphocytes10028 Institute of Medical VirologyCell TransplantationGenetic enhancementAdoptiveMice SCIDImmunotherapy AdoptiveInterleukin 21MiceMice Inbred NODTransduction GeneticBone MarrowLeukocytesImmunology and AllergyCytotoxic T cellIL-2 receptorLuciferasesCells CulturedMice KnockoutHeterologousTumorCulturedForkhead Transcription FactorsAcquired immune systemFlow Cytometry3. Good healthCell biologymedicine.anatomical_structure[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology2723 Immunology and Allergy[SDV.IMM]Life Sciences [q-bio]/ImmunologyImmunotherapyRegulatory T cellCellsKnockoutTransplantation HeterologousImmunologyMononuclearGenetic VectorsGreen Fluorescent Proteins610 Medicine & healthStreptamerThymus GlandBiologySCIDCell LineTransductionGeneticCell Line TumormedicineAnimalsHumansInterleukin 3Transplantation2403 ImmunologyLentivirusGenetic TherapyMolecular biology[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyHEK293 CellsLeukocytes MononuclearInbred NOD570 Life sciences; biologySpleen
researchProduct

566. Selective and Stable Transduction of Human CD4+ T Cells In Vivo Upon Systemic Administration of CD4-Targeted Lentiviral Vectors

2015

Playing a central role in both innate and adaptive immunity, CD4+ T cells are the key target for genetic modifications in basic research and immunotherapy. Specific and stable delivery of therapeutic genes into these cells is therefore highly desirable. Here, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4+ cells by surface engineering. This novel CD4-LV was highly specific and effective in genetic modification of human CD4+ T cells both in vitro and in vivo. When applied to peripheral blood mononuclear cells (PBMC), CD4-LV transduced CD4+ but not CD4− cells. Notably, also unstimulated T cells were stably genetically modified. Upon sys…

PharmacologyStreptamerBiologyNatural killer T cellMolecular biologyCell biologyInterleukin 21Drug DiscoveryInterleukin 12GeneticsCytotoxic T cellMolecular MedicineIL-2 receptorAntigen-presenting cellMolecular BiologyInterleukin 3Molecular Therapy
researchProduct