0000000000261209

AUTHOR

Andrea Firrincieli

0000-0001-5768-3170

showing 2 related works from this author

Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1

2019

This is the accepted manuscript of the paper "Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1", published as final paper in "Frontiers in Microbiology Volume 10, 07 May 2019, Pages 888 https://doi.org/10.3389/fmicb.2019.00888”. Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria p…

Microbiology (medical)arsenic resistance geneThioredoxin reductaselcsh:QR1-502chemistry.chemical_elementMicrobiologylcsh:MicrobiologyNO03 medical and health scienceschemistry.chemical_compoundR. aetherivorans BCP1Gene clusterRhodococcusArsenic030304 developmental biologyArseniteOriginal Research0303 health sciencesbiology030306 microbiologyarsenate reductionarsenic resistance genesbiology.organism_classificationActinobacteriaArsenate reductaseBiochemistrychemistryarsenic resistance genes arsenate reduction Rhodococcus R. aetherivorans BCP1 ActinobacteriaThioredoxinEnergy sourceRhodococcusRhodococcuFrontiers in Microbiology
researchProduct

Biotechnology of Rhodococcus for the production of valuable compounds

2020

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production o…

BioconversionSiderophoreBioflocculantsBioconversionMicroorganismBiosynthesiIndustrial WasteSiderophoresBiosynthesisApplied Microbiology and BiotechnologyRhodococcus Antimicrobials Bioflocculants Biosynthesis Bioconversion Biosurfactants Carotenoids Lipids Metal-based nanostructures SiderophoresBioproductsRhodococcusTriglyceridesCarotenoidHigh concentrationbiologyAntimicrobialsChemistrybusiness.industryMetal-based nanostructureBiosurfactantBioflocculantGeneral MedicineMini-ReviewLipidbiology.organism_classificationCarotenoidsLipidsRefuse DisposalBiotechnologyBiosurfactantsbacteriaAntimicrobialbusinessRhodococcusMetal-based nanostructuresBacteriaRhodococcuBiotechnologyWaste disposalApplied Microbiology and Biotechnology
researchProduct