0000000000261269
AUTHOR
T. Fernandez-carames
Strange tribaryons
We use two-body potentials derived from a constituent quark cluster model to analyze the bound-state problem of the $\Sigma NN$ system. The observables of the two-body subsystems, $NN$ and $\Sigma N$, are well reproduced. We do not find $\Sigma NN$ bound states, but there are two attractive channels with a resonance close above the three-body threshold. These channels are the $(I,J)=(1,1/2)$ and $(0,1/2)$, their quantum numbers, widths and energy ordering consistent with the recently measured strange tribaryons from the $^{4}{\rm He}(K_{{\rm stopped}}^{-},N)$ reactions in the KEK PS E471 experiment.
ΛNNandΣNNsystems at threshold
We calculate the hypertriton binding energy and the $\ensuremath{\Lambda}d$ and $\ensuremath{\Sigma}d$ scattering lengths using baryon-baryon interactions obtained from a chiral constituent quark model. We study consistently the $\ensuremath{\Lambda}\mathit{NN}$ and $\ensuremath{\Sigma}\mathit{NN}$ systems by analyzing the effect of the $\ensuremath{\Sigma}\ensuremath{\leftrightarrow}\ensuremath{\Lambda}$ conversion. Our interactions correctly predict the hypertriton binding energy. The $(I,J)=(0,3/2)$ $\ensuremath{\Lambda}\mathit{NN}$ channel is also attractive and it might have a bound state. From the condition of nonexistence of a (0,3/2) $\ensuremath{\Lambda}\mathit{NN}$ bound state, an…
ΛNNandΣNNsystems at threshold. II. The effect ofDwaves
Using the two-body interactions obtained from a chiral constituent quark model, we study allN N andN N states with I = 0, 1, 2a ndJ = 1/2, 3/2 at threshold, taking into account all three-body configurations with S and D wave components. We constrain further the limits for theN spin-triplet scattering length a1/2,1 .U sing the hypertriton binding energy, we find a narrow interval for the possible values of theN spin-singlet scattering length a1/2,0. We find that theN N system has a quasibound state in the (I,J ) = (1, 1/2) channel very near threshold with a width of about 2.1 MeV.