0000000000261432
AUTHOR
Pablo Shmerkin
Zeros of {-1,0,1}-power series and connectedness loci for self-affine sets
We consider the set W of double zeros in (0,1) for power series with coefficients in {-1,0,1}. We prove that W is disconnected, and estimate the minimum of W with high accuracy. We also show that [2^(-1/2)-e,1) is contained in W for some small, but explicit e>0 (this was only known for e=0). These results have applications in the study of infinite Bernoulli convolutions and connectedness properties of self-affine fractals.
Dynamics of the scenery flow and geometry of measures
We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…
Resonance between Cantor sets
Let $C_a$ be the central Cantor set obtained by removing a central interval of length $1-2a$ from the unit interval, and continuing this process inductively on each of the remaining two intervals. We prove that if $\log b/\log a$ is irrational, then \[ \dim(C_a+C_b) = \min(\dim(C_a) + \dim(C_b),1), \] where $\dim$ is Hausdorff dimension. More generally, given two self-similar sets $K,K'$ in $\RR$ and a scaling parameter $s>0$, if the dimension of the arithmetic sum $K+sK'$ is strictly smaller than $\dim(K)+\dim(K') \le 1$ (``geometric resonance''), then there exists $r<1$ such that all contraction ratios of the similitudes defining $K$ and $K'$ are powers of $r$ (``algebraic resonance…
Overlapping self-affine sets of Kakeya type
We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.
Visible parts of fractal percolation
We study dimensional properties of visible parts of fractal percolation in the plane. Provided that the dimension of the fractal percolation is at least 1, we show that, conditioned on non-extinction, almost surely all visible parts from lines are 1-dimensional. Furthermore, almost all of them have positive and finite Hausdorff measure. We also verify analogous results for visible parts from points. These results are motivated by an open problem on the dimensions of visible parts.
Structure of distributions generated by the scenery flow
We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution in the sense of Hochman is generated by a uniformly scaling measure, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery flow. We further show that the collection of fractal distributions is closed under the weak topology and, moreover, is a Poulsen simplex, that is, extremal points are dense. We apply these to show that a Baire generic measure is as far as possible from being uniformly scaling: at almost all points, it has all fractal distributions as tangent …