0000000000261643
AUTHOR
Silvia Vilasi
Chaperonotherapy for Alzheimer’s Disease: Focusing on HSP60
This review will analyze growing evidence suggesting a convergence between two major areas of research: Alzheimer’s disease (AD) and chaperonopathies. While AD is a widely recognized medical, public health, and social problem, the chaperonopathies have not yet been acknowledged as a related burden of similar magnitude. However, recent evidence collectively indicates that such possibility exists in that AD, or at least some forms of it, may indeed be a chaperonopathy. The importance of considering this possibility cannot be overemphasized since it provides a novel point of view to examine AD and potentially suggests new therapeutic avenues. In this review, we focus on the mitochondrial chape…
Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns
International audience; Curcumin is a natural polyphenol able to bind the amyloid beta peptide, which is related to Alzheimer's disease, and modify its self-assembly pathway. This paper focuses on a multi-disciplinary study that starts from the design of curcumin-like compounds with the key chemical features required for inhibiting amyloid beta aggregation, and reports the effects of these compounds on the in vitro aggregation of amyloid beta peptides. Chemoinformatic screening was performed through the calculation of molecular descriptors that were able to highlight the drug-like profile, followed by docking studies with an amyloid beta peptide fibril. The computational design underlined t…
(DIS)Assembly and Structural Stability of mtHsp60 and its Precursor NaÏve Form
Heat shock protein 60kDa is a molecular chaperone (GroEL human homolog) that assists protein folding in mitochondria (mtHsp60). It is synthesized in the cell cytoplasm as a higher molecular weight precursor form (p-mtHsp60) containing a N-terminal targeting sequence, that is cleaved after import into the mitochondrial matrix [1, 2].It has been established, and demonstrated by various techniques, Hsp60 can accumulate in the cytosol, in various pathological conditions (i.e., cancer and chronic inflammatory diseases). The cytosolical Hsp60 accumulation mechanism may occur with or without mitochondrial release concomitantly, so that in the cytosol the two types of 60 kDa chaperonin proteins, (m…
Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates
The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β- secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-sel…
Human Hsp60 with Its Mitochondrial Import Signal Occurs in Solution as Heptamers and Tetradecamers Remarkably Stable over a Wide Range of Concentrations
It has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naive, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naive cytosolic Hsp60 in solution. Results were obtained by different biophysical methods (light and X ray scattering, single molecule spectroscopy and hydrodynamics) that all together allowed us to assay a wide range of concentrations of Hsp60…
Investigation on a MMACHC mutant from cblC disease: The c.394C>T variant
The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Althou…
Hsp60, amateur chaperone in amyloid-beta fibrillogenesis
BACKGROUND: Molecular chaperones are a very special class of proteins that play essential roles in many cellular processes like folding, targeting and transport of proteins. Moreover, recent evidence indicates that chaperones can act as potentially strong suppressor agents in Alzheimer's disease (AD). Indeed, in vitro experiments demonstrate that several chaperones are able to significantly slow down or suppress aggregation of Aβ peptide and in vivo studies reveal that treatment with specific chaperones or their overexpression can ameliorate some distinct pathological signs characterizing AD. METHODS: Here we investigate using a biophysical approach (fluorescence, circular dichroism (CD), t…
Chaperonin of Group I: Oligomeric spectrum and biochemical and biological implications
Chaperonins play various physiological roles and can also be pathogenic. Elucidation of their structure, e.g., oligomeric status and post-translational modifications (PTM), is necessary to understand their functions and mechanisms of action in health and disease. Group I chaperonins form tetradecamers with two stacked heptameric rings. The tetradecamer is considered the typical functional complex for folding of client polypeptides. However, other forms such as the monomer and oligomers with smaller number of subunits than the classical tetradecamer, also occur in cells. The properties and functions of the monomer and oligomers, and their roles in chaperonin-associated diseases are still inc…
Entrapment of A Beta 1-40 peptide in unstructured aggregates
Recognizing the complexity of the fibrillogenesis process provides a solid ground for the development of therapeutic strategies aimed at preventing or inhibiting protein-protein aggregation. Under this perspective, it is meaningful to identify the possible aggregation pathways and their relative products. We found that Aβ-peptide dissolved in a pH 7.4 solution at small peptide concentration and low ionic strength forms globular aggregates without typical amyloid β-conformation. ThT binding kinetics was used to monitor aggregate formation. Circular dichroism spectroscopy, AFM imaging, static and dynamic light scattering were used for structural and morphological characterization of the aggre…
Structure and Stability of Hsp60 and Groel in Solution
Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …