0000000000261644
AUTHOR
Giulio Taglialatela
Chaperonotherapy for Alzheimer’s Disease: Focusing on HSP60
This review will analyze growing evidence suggesting a convergence between two major areas of research: Alzheimer’s disease (AD) and chaperonopathies. While AD is a widely recognized medical, public health, and social problem, the chaperonopathies have not yet been acknowledged as a related burden of similar magnitude. However, recent evidence collectively indicates that such possibility exists in that AD, or at least some forms of it, may indeed be a chaperonopathy. The importance of considering this possibility cannot be overemphasized since it provides a novel point of view to examine AD and potentially suggests new therapeutic avenues. In this review, we focus on the mitochondrial chape…
Hsp60 in Modifications of Nervous System Homeostasis and Neurodegeneration
Hsp60 is a critical chaperonin for its role in preserving cell survival and protecting mitochondria against stress conditions. Indeed, mutations or malfunctions of Hsp60 are involved in several human diseases, either genetic or acquired, some of them affecting also the brain. In this chapter, we present several experimental observations supporting the role of Hsp60 in some neurodegenerative diseases. Further, Hsp60, as multifunctional protein, contributes to the protein folding system, to protect mitochondria and is involved in several other cellular pathways that are known to be affected in these diseases. Furthermore, due to its role outside of the mitochondria and in the extracellular fl…
Hsp60 Protects against Amyloid β Oligomer Synaptic Toxicity via Modification of Toxic Oligomer Conformation
Alzheimer's disease (AD) is the leading cause of dementia worldwide. While the etiology of AD remains uncertain, neurotoxic effects of amyloid beta oligomers (Aβo) on synaptic function, a well-established early event in AD, is an attractive area for the development of novel strategies to modify or cease the disease's progression. In this work, we tested the protective action of the mitochondrial chaperone Hsp60 against Aβo neurotoxicity, by determining the direct effect of Hsp60 in changing Aβo toxic conformations and thus reducing their dysfunctional synaptic binding and consequent suppression of long-term potentiation. Our data suggest that Hsp60 has a direct impact on Aβo, resulting in a…