0000000000261676
AUTHOR
Sadiel E. Ortega-broche
Nucleotide's bilinear indices: Novel bio-macromolecular descriptors for bioinformatics studies of nucleic acids. I. Prediction of paromomycin's affinity constant with HIV-1 Ψ-RNA packaging region
A new set of nucleotide-based bio-macromolecular descriptors are presented. This novel approach to bio-macromolecular design from a linear algebra point of view is relevant to nucleic acids quantitative structure-activity relationship (QSAR) studies. These bio-macromolecular indices are based on the calculus of bilinear maps on Re(n)[b(mk)(x (m),y (m)):Re(n) x Re(n)--Re] in canonical basis. Nucleic acid's bilinear indices are calculated from kth power of non-stochastic and stochastic nucleotide's graph-theoretic electronic-contact matrices, M(m)(k) and (s)M(m)(k), respectively. That is to say, the kth non-stochastic and stochastic nucleic acid's bilinear indices are calculated using M(m)(k)…
tomocomd-camps and protein bilinear indices - novel bio-macromolecular descriptors for protein research: I. Predicting protein stability effects of a complete set of alanine substitutions in the Arc repressor
Descriptors calculated from a specific representation scheme encode only one part of the chemical information. For this reason, there is a need to construct novel graphical representations of proteins and novel protein descriptors that can provide new information about the structure of proteins. Here, a new set of protein descriptors based on computation of bilinear maps is presented. This novel approach to biomacromolecular design is relevant for QSPR studies on proteins. Protein bilinear indices are calculated from the kth power of nonstochastic and stochastic graph–theoretic electronic-contact matrices, and , respectively. That is to say, the kth nonstochastic and stochastic protein bili…