A Trajectory-Driven 3D Channel Model for Human Activity Recognition
This paper concerns the design, analysis, and simulation of a 3D non-stationary channel model fed with inertial measurement unit (IMU) data. The work in this paper provides a framework for simulating the micro-Doppler signatures of indoor channels for human activity recognition by using radiofrequency-based sensing technologies. The major human body segments, such as wrists, ankles, torso, and head, are modelled as a cluster of moving point scatterers. We provide expressions for the time variant (TV) speed and TV angles of motion based on 3D trajectories of the moving person. Moreover, we present mathematical expressions for the TV Doppler shifts and TV path gains associated with each movin…