0000000000261706

AUTHOR

Serena Viti

ALMA spectral survey of Supernova 1987A – molecular inventory, chemistry, dynamics and explosive nucleosynthesis

We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of…

research product

ALMA observations of Molecules in Supernova 1987A

AbstractSupernova (SN) 1987A has provided a unique opportunity to study how SN ejecta evolve in 30 years time scale. We report our ALMA spectral observations of SN 1987A, taken in 2014, 2015 and 2016, with detections of CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO.We find a dip in the SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities causes mixing of gas, with heavier elements much more disturbed, making more elongated structure.Using 28SiO and its isotopologues, Si isotope ratios were estimated for the first time in SN 1…

research product

Diagnosing shock temperature with NH3and H2O profiles

In a previous study of the L1157 B1 shocked cavity, a comparison between NH$_3$(1$_0$-$0_0$) and H$_2$O(1$_{\rm 10}$--1$_{\rm 01}$) transitions showed a striking difference in the profiles, with H$_2$O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed b…

research product