0000000000261911
AUTHOR
Yu. V. Ushakov
Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model
The phenomena of dissonance and consonance in a simple auditory sensory model composed of three neurons are considered. Two of them, here so-called sensory neurons, are driven by noise and subthreshold periodic signals with different ratio of frequencies, and its outputs plus noise are applied synaptically to a third neuron, so-called interneuron. We present a theoretical analysis with a probabilistic approach to investigate the interspike intervals statistics of the spike train generated by the interneuron. We find that tones with frequency ratios that are considered consonant by musicians produce at the third neuron inter-firing intervals statistics densities that are very distinctive fro…
The resemblance of an autocorrelation function to a power spectrum density for a spike train of an auditory model
In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.
Regularity of Spike Trains and Harmony Perception in a Model of the Auditory System
Spike train regularity of the noisy neural auditory system model under the influence of two sinusoidal signals with different frequencies is investigated. For the increasing ratio m/n of the input signal frequencies (m, n are natural numbers) the linear growth of the regularity is found at the fixed difference (m - n). It is shown that the spike train regularity in the model is high for harmonious chords of input tones and low for dissonant ones.