0000000000261952
AUTHOR
Christopher P. O. Reyer
Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation
International audience; Carbon fluxes at the land-atmosphere interface are strongly influenced by weather and climate conditions. Yet what is usually known as “climate extremes” does not always translate into very high or low carbon fluxes or so-called “carbon extremes.” To reveal the patterns of how climate extremes influence terrestrial carbon fluxes, we analyzed the interannual variations in ecosystem carbon fluxes simulated by the Terrestrial Biosphere Models (TBMs) in the Inter-Sectoral Impact Model Intercomparison Project. At the global level, TBMs simulated reduced ecosystem net primary productivity (NPP; 18.5 ± 9.3 g C m−2 yr−1), but enhanced heterotrophic respiration (Rh; 7 ± 4.6 g…
Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…