0000000000262458

AUTHOR

Giovanna Canu

0000-0003-0819-9352

showing 5 related works from this author

Electrode–Electrolyte Compatibility in Solid-Oxide Fuel Cells: Investigation of the LSM–LNC Interface with X-ray Microspectroscopy

2015

Ca:LaNbO4 (LNC) constitutes the last real breakthrough in high-temperature proton conductors, with better chemical and mechanical stability with respect to cerate and zirconate perovskites. However, the low amount of bivalent dopant that can be hosted in the LaNbO4 matrix poses a limit to the proton concentration in the electrolyte. Using synchrotron X-ray microspectroscopy, we investigated the compatibility of annealed LNC/LSM electrolyte/cathode bilayers for proton-conducting SOFCs. The element maps are complemented by microEXAFS and microXANES, giving information on the fate of different cations after diffusion. The X-ray microspectroscopy approach described here is applied for the first…

PROTON CONDUCTORScathodeMaterials scienceGeneral Chemical EngineeringX-ray microspectroscopyXRFOxideelectrolyteElectrolytefuel cellchemistry.chemical_compoundMaterials ChemistrySOFCX-rayCompatibility (geochemistry)General Chemistryelectrodelanthanum manganitelanthanum strontium manganiteEXAFSCHEMICAL COMPATIBILITYchemistryChemical engineeringElectrodemicroXRFFuel cellsLNClanthanum niobateChemistry of Materials
researchProduct

Solid-state compatibility of Ca:LaNbO4 with perovskite cathodes: Evidences from X-ray microspectroscopy

2022

The solid-state compatibility between calcium-doped lanthanum niobate and three perovskite cathode materials was investigated using two X-ray microbeam techniques, micro X-ray fluorescence and micro X-ray absorption spectroscopy. The cathode powders (lanthanum strontium ferrite, either cobalt or copper-doped, and lanthanum strontium cobaltite) in contact with the dense electrolyte pellet were annealed at 1150 degrees C for 12-144 h to simulate the effect of thermal stresses due to fabrication and long-term operation. As a result, several interdiffusion phenomena were then observed on the bilayer cross-sections: in particular, the chemical state and coordination environment of calcium, iron,…

cathodeMaterials scienceAbsorption spectroscopyGeneral Chemical EngineeringNiobiumchemistry.chemical_elementPositive ionelectrolyteinterfaceschemistry.chemical_compoundchemical compatibilityLanthanumscheelitesolid oxide fuel cellElectrochemistryLanthanumx-ray microspectroscopySOFClanthanum strontium cobaltiteperovskitePerovskite (structure)Compatibility (geochemistry)CobaltiteChemical statechemistryChemical engineeringNiobium compoundStrontiumSettore CHIM/03 - Chimica Generale E InorganicaLaNbO4X ray absorption spectroscopylanthanum strontium ferriteCalciumCobaltlanthanum niobate
researchProduct

Interface Solid-State Reactions in La0.8Sr0.2MnO3/Ce0.8Sm0.2O2 and La0.8Sr0.2MnO3/BaCe0.9Y0.1O3 Disclosed by X-ray Microspectroscopy

2019

The stability of the electrode/electrolyte interface is a critical issue in solid-oxide cells working at high temperatures, affecting their durability. In this paper, we investigate the solid-state chemical mechanisms that occur at the interface between two electrolytes (Ce0.8Sm0.2O2, SDC, and BaCe0.9Y0.1O3, BCY) and a cathode material (La0.8Sr0.2MnO3, LSM) after prolonged thermal treatments. Following our previous work on the subject, we used X-ray microspectroscopy, a technique that probes the interface with submicrometric resolution combining microanalytical information with the chemical and structural information coming from space-resolved X-ray absorption spectroscopy. In LSM/BCY, the …

Materials scienceAbsorption spectroscopyXASXRFAnalytical chemistryEnergy Engineering and Power Technologychemistry.chemical_elementManganeseElectrolytefuel cellselectrolytecompatibilitySDCfuel cellchemistry.chemical_compoundThermalMaterials ChemistryElectrochemistryID21Chemical Engineering (miscellaneous)materials compatibilityESRFx-ray microspectroscopySOFCElectrical and Electronic Engineeringx-ray fluorescenceLanthanum strontium manganiteX-rayBCYelectrodeXANESceriaChemical statelanthanum strontium manganitechemistryElectrodeinterdiffusionbarium cerate
researchProduct

Characterisation of scheelite LaW0.16Nb0.84O4.08 ion conductor by combined synchrotron techniques: Structure, W oxidation state and interdiffusion

2021

Abstract Scheelite-type materials such as LaNbO4 are increasingly attracting attention as a possible alternative to the most common fluorite and perovskite structure as ion conductors. However, they are much less used and investigated. The introduction of tungsten in lanthanum orthoniobate leads to conduction properties that are compatible with oxygen ion conductivity. In this paper, we studied the effect of the introduction of tungsten in the LaNbO4 structure. High resolution X-ray diffraction showed that in LaNb1-xWxO4+x/2 with x = 0.16 the monoclinic distortion is largely suppressed and the tetragonal phase is predominant at room temperature. By XANES/EXAFS we proved that tungsten is in …

Materials scienceScheeliteAnalytical chemistrychemistry.chemical_elementChemical compatibility02 engineering and technologyTungsten010402 general chemistry01 natural sciencesIonchemistry.chemical_compoundTetragonal crystal systemElectrolyteMaterials ChemistryLSMlectrolyteValence (chemistry)Extended X-ray absorption fine structureMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyXANESXANES0104 chemical scienceschemistryMechanics of MaterialsScheelite0210 nano-technologySolid-oxide fuel cellsMonoclinic crystal systemJournal of Alloys and Compounds
researchProduct

Cation Diffusion and Segregation at the Interface between Samarium-Doped Ceria and LSCF or LSFCu Cathodes Investigated with X-ray Microspectroscopy

2017

The chemical compatibility between electrolytes and electrodes is an extremely important aspect governing the overall impedance of solid-oxide cells. Because these devices work at elevated temperatures, they are especially prone to cation interdiffusion between the cell components, possibly resulting in secondary insulating phases. In this work, we applied X-ray microspectroscopy to study the interface between a samarium-doped ceria (SDC) electrolyte and lanthanum ferrite cathodes (La0.4Sr0.6Fe0.8Cu0.2O3(LSFCu); La0.9Sr0.1Fe0.85Co0.15O3(LSCF)), at a submicrometric level. This technique allows to combine the information about the diffusion profiles of cations on the scale of several micromet…

cathodeMaterials scienceAbsorption spectroscopyX-ray microspectroscopychemistry.chemical_element02 engineering and technologyElectrolyteelectrolytecompatibility010402 general chemistry01 natural scienceslaw.inventioninterfaceslawsamarium-doped ceriaLanthanumGeneral Materials ScienceSOFCCation diffusionDoping021001 nanoscience & nanotechnologyXANESCathodeXANES0104 chemical sciencesceriaSamariumCeriumchemistryChemical engineeringMaterials Science (all)0210 nano-technologycathodes
researchProduct