0000000000262552

AUTHOR

Tove M. Gabrielsen

showing 4 related works from this author

Linking extreme seasonality and gene expression in arctic marine protists

2021

ABSTRACTAt high latitudes, strong seasonal differences in light availability affect marine organisms and restrict the timing of ecosystem processes. Marine protists are key players in Arctic aquatic ecosystems, yet little is known about their ecological roles over yearly cycles. This is especially true for the dark polar night period, which up until recently was assumed to be devoid of biological activity. A 12 million transcripts catalogue was built from 0.45-10 μm protist assemblages sampled over 13 months in a time series station in an arctic fjord in Svalbard. Community gene expression was correlated with seasonality, with light as the main driving factor. Transcript diversity and evenn…

0106 biological sciencesClimate changemicrobial eukaryotesBiologyunicellular eukaryotesmedicine.disease_cause01 natural sciences03 medical and health sciencespolar daymedicineEcosystem14. Life underwater030304 developmental biology[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesmetatranscriptomicsPolar nightpolar nightEcology010604 marine biology & hydrobiologyAquatic ecosystemProtistSeasonalitymedicine.disease[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]Arctic13. Climate actionSpecies evennesstime seriesgeographic locations
researchProduct

Parasite–copepod interactions in Svalbard: diversity, host specificity, and seasonal patterns

2022

AbstractCopepods of the genera Calanus and Pseudocalanus are important components of Arctic marine ecosystems. Despite the key roles of these zooplankters, little is known about the organisms they interact with most intimately, their parasites and symbionts. We applied metabarcode sequencing to uncover eukaryotic parasites present within these two copepod genera from three areas around the high Arctic archipelago of Svalbard. Ten distinct parasite groups were observed: four different Apostome ciliates, four different dinoflagellates (Chytriodinium sp., Ellobiopsis sp., Thalassomyces sp., and Hematodinium sp.), a Paradinium sp., and a trematode. Apostome ciliates closely related to Pseudocol…

/dk/atira/pure/sustainabledevelopmentgoals/life_below_waterPseudocalanus spp.ArcticCalanus glacialisfungiMetabarcodingVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470ParasitesSDG 14 - Life Below WaterGeneral Agricultural and Biological Sciences
researchProduct

Higher sensitivity towards light stress and ocean acidification in an Arctic sea-ice-associated diatom compared to a pelagic diatom.

2020

Thalassiosira hyalina and Nitzschia frigida are important members of Arctic pelagic and sympagic (sea-ice-associated) diatom communities. We investigated the effects of light stress (shift from 20 to 380 µmol photons m-2  s-1 , resembling upwelling or ice break-up) under contemporary and future pCO2 (400 vs 1000 µatm). The responses in growth, elemental composition, pigmentation and photophysiology were followed over 120 h and are discussed together with underlying gene expression patterns. Stress response and subsequent re-acclimation were efficiently facilitated by T. hyalina, which showed only moderate changes in photophysiology and elemental composition, and thrived under high light aft…

0106 biological sciences010504 meteorology & atmospheric sciencesPhysiologyOceans and SeasPlant Science01 natural sciencesAcclimatizationSeawater14. Life underwater0105 earth and related environmental sciencesDiatomsgeographygeography.geographical_feature_categorybiologyEcologyArctic Regions010604 marine biology & hydrobiologyPelagic zoneOcean acidificationHydrogen-Ion Concentrationbiology.organism_classificationArctic ice packLight intensityDiatomArctic13. Climate actionUpwellingThe New phytologistReferences
researchProduct

Arctic sea ice algae differ markedly from phytoplankton in their ecophysiological characteristics

2021

Photophysiological and biochemical characteristics were investigated in natural communities of Arctic sea ice algae and phytoplankton to understand their respective responses towards variable irradiance and nutrient regimes. This study revealed large differences in photosynthetic efficiency and capacity between the 2 types of algal assemblages. Sea ice algal assemblages clearly displayed increased photoprotective energy dissipation under the highest daily average irradiance levels (>8 µmol photons m-2 s-1). In contrast, phytoplankton assemblages were generally light-limited within the same irradiance ranges. Furthermore, phytoplankton assemblages exhibited more efficient carbon assimilat…

0106 biological sciencesgeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesEcologybiology010604 marine biology & hydrobiologyClimate changePelagic zoneAquatic Sciencebiology.organism_classification01 natural sciencesAlgal bloomArctic ice packOceanographyArcticAlgae13. Climate actionPhytoplanktonSea iceEnvironmental scienceVDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 49714. Life underwaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct