Manifolds with vectorial torsion
Abstract The present note deals with the properties of metric connections ∇ with vectorial torsion V on semi-Riemannian manifolds ( M n , g ) . We show that the ∇-curvature is symmetric if and only if V ♭ is closed, and that V ⊥ then defines an ( n − 1 ) -dimensional integrable distribution on M n . If the vector field V is exact, we show that the V-curvature coincides up to global rescaling with the Riemannian curvature of a conformally equivalent metric. We prove that it is possible to construct connections with vectorial torsion on warped products of arbitrary dimension matching a given Riemannian or Lorentzian curvature—for example, a V-Ricci-flat connection with vectorial torsion in di…