0000000000262735

AUTHOR

Ilka Agricola

0000-0001-5237-2816

showing 1 related works from this author

Manifolds with vectorial torsion

2015

Abstract The present note deals with the properties of metric connections ∇ with vectorial torsion V on semi-Riemannian manifolds ( M n , g ) . We show that the ∇-curvature is symmetric if and only if V ♭ is closed, and that V ⊥ then defines an ( n − 1 ) -dimensional integrable distribution on M n . If the vector field V is exact, we show that the V-curvature coincides up to global rescaling with the Riemannian curvature of a conformally equivalent metric. We prove that it is possible to construct connections with vectorial torsion on warped products of arbitrary dimension matching a given Riemannian or Lorentzian curvature—for example, a V-Ricci-flat connection with vectorial torsion in di…

Mathematics - Differential GeometrySpinor010102 general mathematicsSpinor bundlePrimary 53C25 Secondary 81T30CurvatureDirac operator01 natural sciencesManifoldsymbols.namesakeDifferential Geometry (math.DG)Computational Theory and MathematicsSpinor fieldKilling spinor0103 physical sciencesFOS: MathematicssymbolsMathematics::Differential Geometry010307 mathematical physicsGeometry and Topology0101 mathematicsAnalysisScalar curvatureMathematicsMathematical physicsDifferential Geometry and its Applications
researchProduct