0000000000264199

AUTHOR

S. Schlichting

showing 2 related works from this author

Predictions for Cold Nuclear Matter Effects in $p+$Pb Collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV

2017

Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quarks produced in $p+$Pb collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of $p+$Pb to $p+p$ cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parton distribution functions on particle production can now be probed over a wider range of phase space than ever before.

Drell-Yan processNuclear TheoryCold nuclear matterFOS: Physical sciencesparton: distribution functiondileptonphase spaceHigh Energy Physics - Phenomenology (hep-ph)Perturbative QCDheavy quarkNuclear ExperimentParticle Physics - Phenomenologygauge bosonHard and electromagnetic probesHigh Energy Physics::Phenomenologyphotonnucleushep-phnuclear matter: effectHigh Energy Physics - PhenomenologyCharged hadron production[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimenthadronquarkonium
researchProduct

Spectral function of fermions in a highly occupied non-Abelian plasma

2022

We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occupied non-Abelian plasma close to its non-thermal fixed point, i.e., in a self-similar regime of the non-equilibrium dynamics. We find good agreement with hard loop perturbation theory for medium-induced masses, dispersion relations and quasiparticle residues. We also extract the full momentum dependence of the damping rate of the collective excitations.

Heavy-ion collisionsNuclear and High Energy PhysicsNuclear Theoryquark-gluon plasmanonequilibrium QFTThermal QFTHigh Energy Physics - Lattice (hep-lat)Quark-gluon plasmakvarkki-gluoniplasmaFOS: Physical scienceshard-thermal loopheavy-ion collisionsspectral functionhiukkasfysiikkathermal QFT114 Physical sciencesSpectral functionNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Hard-thermal loopkvanttikenttäteoriaNonequilibrium QFT
researchProduct