0000000000264199
AUTHOR
S. Schlichting
Predictions for Cold Nuclear Matter Effects in $p+$Pb Collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV
Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quarks produced in $p+$Pb collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of $p+$Pb to $p+p$ cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parton distribution functions on particle production can now be probed over a wider range of phase space than ever before.
Spectral function of fermions in a highly occupied non-Abelian plasma
We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occupied non-Abelian plasma close to its non-thermal fixed point, i.e., in a self-similar regime of the non-equilibrium dynamics. We find good agreement with hard loop perturbation theory for medium-induced masses, dispersion relations and quasiparticle residues. We also extract the full momentum dependence of the damping rate of the collective excitations.