0000000000265945
AUTHOR
Mikhail G. Brik
First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3
In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical bonds in the de…
First Principles Calculations of Atomic and Electronic Structure of Ti3+Al- and Ti2+Al-Doped YAlO3
M.G.B. appreciates support from the Chongqing Recruitment Program for 100 Overseas Innovative Talents (grant no. 2015013), the Program for the Foreign Experts (grant no. W2017011), Wenfeng High-end Talents Project (grant no. W2016-01) offered by the Chongqing University of Posts and Telecommunications (CQUPT), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), and NCN project 2018/31/B/ST4/00924. This study was supported by a grant from Latvian Research Council No. LZP-2018/1-0214 (for AIP). Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Program H202…
Crystal field calculations of energy levels of the Ni2+ ions in MgO
Abstract The electronic energy levels of six-fold coordinated Ni 2+ ion in magnesium oxide MgO were calculated using the exchange charge model of crystal field theory. The calculated energetic positions of the Ni 2+ levels match well the experimental spectrum. Inclusion of the spin-orbit (SO) interaction is compulsory to account for the first excited 3 T 2g state fine structure; however, it does not explain why out of four levels arising from the 3 T 2g state, only two are seen in the experimental spectra. One possible explanation to this fact can be advanced by invoking the Jahn–Teller effect.
Spectroscopic studies of Cr3+ ions in natural single crystal of magnesium aluminate spinel MgAl2O4
Abstract The natural spinel crystal MgAl2O4 containing the Cr3+ ions was studied experimentally and theoretically in this paper. The absorption and emission spectra at room and low temperatures were recorded. The experimental spectroscopic results were aided with the crystal field calculations, which returned the energy level schemes of the Cr3+ ions at the Al sites with the local D3d symmetry. Effects of the trigonal crystal field were clearly seen in the calculated results, which were compared with the experimental spectra to yield a good agreement between both data sets.
Impact of anionic system modification on the desired properties for CuGa(S1−Se )2 solid solutions
Abstract One of promising directions of the modern solar cells’ development is related to the use of the ternary chalcopyrite crystals (CuInS2, CuGaS2 etc.) and their solid solutions as efficient light absorbing layers. Unfortunately, so far there is no systematic research linking chemical composition to useful properties allowing their optimization to increase the efficiency of solar cells. Therefore, we report the results of the detailed theoretical studies of the structural, electronic, and optical properties for the series of CuGa(S1−xSex)2 solid solutions (x = 0, 0.25, 0.5, 0.75, 1) in the framework of the density functional theory. For this purpose, crystal structures are analyzed wit…