Ozone depletion in tropospheric volcanic plumes
Ground based remote sensing techniques are used to measure volcanic SO2 fluxes in efforts to characterise volcanic activity. As these measurements are made several km from source there is the potential for in-plume chemical transformation of SO2 to sulphate aerosol (conversion rates are dependent on meteorological conditions), complicating interpretation of observed SO2 flux trends. In contrast to anthropogenic plumes, SO2 lifetimes are poorly constrained for tropospheric volcanic plumes, where the few previous loss rate estimates vary widely (from 99% per hour). We report experiments conducted on the boundary layer plume of Masaya volcano, Nicaragua during the dry season. We found that SO2…
Interaction of radiation fog with tall vegetation
Abstract A one-dimensional radiation fog model is presented. It is coupled with a second model to include the effects of tall vegetation. The fog model describes in detail the dynamics, thermodynamics, and microphysical structure of a fog, as well as the interactions with the atmospheric radiative transfer. A two-dimensional joint size distribution for the aerosol particles and activated fog droplets is used, the activation of aerosol particles is explicitly modeled. The implications of the presence of tall vegetation on the state of the atmosphere and on the evolution of radiation fog are stated. It is shown that the existence of tall vegetation impedes the evolution of radiation fog. The …