0000000000266286

AUTHOR

Esa Järvenpää

showing 8 related works from this author

Visible parts and dimensions

2003

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…

Applied MathematicsMathematical analysisMinkowski–Bouligand dimensionMathematics::General TopologyGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsUrysohn and completely Hausdorff spacesEffective dimensionCombinatoricsPacking dimensionHausdorff distanceHausdorff dimensionMathematics::Metric GeometryHausdorff measureMathematical PhysicsMathematicsNonlinearity
researchProduct

One-dimensional families of projections

2008

Let m and n be integers with 0 < m < n. We consider the question of how much the Hausdorff dimension of a measure may decrease under typical orthogonal projections from onto m-planes provided that the dimension of the parameter space is one. We verify the best possible lower bound for the dimension drop and illustrate the sharpness of our results by examples. The question stems naturally from the study of measures which are invariant under the geodesic flow.

Applied MathematicsMinkowski–Bouligand dimensionGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsGeometryParameter spaceEffective dimensionUpper and lower boundsCombinatoricsPacking dimensionHausdorff dimensionInvariant (mathematics)Mathematical PhysicsMathematicsNonlinearity
researchProduct

Local dimensions of sliced measures and stability of packing dimensions of sections of sets

2004

Abstract Let m and n be integers with 0 R n to certain properties of plane sections of μ. This leads us to prove, among other things, that the lower local dimension of (n−m)-plane sections of μ is typically constant provided that the Hausdorff dimension of μ is greater than m. The analogous result holds for the upper local dimension if μ has finite t-energy for some t>m. We also give a sufficient condition for stability of packing dimensions of section of sets.

CombinatoricsSection (fiber bundle)Mathematics(all)Packing dimensionDimension (vector space)Plane (geometry)General MathematicsHausdorff dimensionMathematical analysisConstant (mathematics)Stability (probability)MathematicsAdvances in Mathematics
researchProduct

Dimensions of random affine code tree fractals

2014

We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.

Discrete mathematicsCode (set theory)v-variable fractalsApplied MathematicsGeneral MathematicsProbability (math.PR)ta111Dynamical Systems (math.DS)self-similar setsTree (descriptive set theory)Box countingFractalIterated function systemMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 60D05 37H99RandomnessMathematics - ProbabilityMathematics
researchProduct

Porosities and dimensions of measures

1999

We introduce a concept of porosity for measures and study relations between dimensions and porosities for two classes of measures: measures on $R^n$ which satisfy the doubling condition and strongly porous measures on $R$.

Applied MathematicsAstrophysics (astro-ph)Mathematical analysisFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Chaotic Dynamics (nlin.CD)Nonlinear Sciences - Chaotic DynamicsAstrophysicsPorosityMathematical PhysicsMathematicsNonlinearity
researchProduct

Relations between natural and observable measures

2005

We give a complete description of relations between observable and natural measures in connection with invariance, ergodicity and absolute continuity.

Pure mathematicsApplied MathematicsErgodicityMathematical analysisGeneral Physics and AstronomyNatural (music)Statistical and Nonlinear PhysicsObservableAbsolute continuityDynamical system (definition)Mathematical PhysicsMathematicsConnection (mathematics)Nonlinearity
researchProduct

Porous measures on $\mathbb {R}^{n}$: Local structure and dimensional properties

2001

We study dimensional properties of porous measures on R n . As a corollary of a theorem describing the local structure of nearly uniformly porous measures we prove that the packing dimension of any Radon measure on R n has an upper bound depending on porosity. This upper bound tends to n - 1 as porosity tends to its maximum value.

Packing dimensionCorollaryApplied MathematicsGeneral MathematicsMathematical analysisRadon measurePorosityUpper and lower boundsLocal structurePhysics::GeophysicsMathematicsProceedings of the American Mathematical Society
researchProduct

Visible parts of fractal percolation

2009

We study dimensional properties of visible parts of fractal percolation in the plane. Provided that the dimension of the fractal percolation is at least 1, we show that, conditioned on non-extinction, almost surely all visible parts from lines are 1-dimensional. Furthermore, almost all of them have positive and finite Hausdorff measure. We also verify analogous results for visible parts from points. These results are motivated by an open problem on the dimensions of visible parts.

28A80Plane (geometry)General MathematicsOpen problemProbability (math.PR)Mathematical analysisFractalDimension (vector space)Mathematics - Classical Analysis and ODEsPercolationHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsHausdorff measureAlmost surelyMathematics - ProbabilityMathematics
researchProduct