0000000000266692

AUTHOR

Juan M. García-gómez

Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on SV 1H MRS: Evaluation as an additional information procedure for novice radiologists

The results of a randomized pilot study and qualitative evaluation of the clinical decision support system Curiam BT are reported. We evaluated the system's feasibility and potential value as a radiological information procedure complementary to magnetic resonance (MR) imaging to assist novice radiologists in diagnosing brain tumours using MR spectroscopy (1.5 and 3.0T). Fifty-five cases were analysed at three hospitals according to four non-exclusive diagnostic questions. Our results show that Curiam BT improved the diagnostic accuracy in all the four questions. Additionally, we discuss the findings of the users' feedback about the system, and the further work to optimize it for real envir…

research product

A User-Centered Chatbot (Wakamola) to Collect Linked Data in Population Networks to Support Studies of Overweight and Obesity Causes: Design and Pilot Study

[EN] Background: Obesity and overweight are a serious health problem worldwide with multiple and connected causes. Simultaneously, chatbots are becoming increasingly popular as a way to interact with users in mobile health apps. Objective: This study reports the user-centered design and feasibility study of a chatbot to collect linked data to support the study of individual and social overweight and obesity causes in populations. Methods: We first studied the users' needs and gathered users' graphical preferences through an open survey on 52 wireframes designed by 150 design students; it also included questions about sociodemographics, diet and activity habits, the need for overweight and o…

research product

Abstract 4258: Preliminarily results of the Oncohabitats Study: A multicentre validation of overall survival (OS) estimation of patients with glioblastoma (GBM) using vascular biomarkers

Abstract We report preliminarily results of an international retrospective study (NCT03439332) analyzing the prognostic value of the early assessment of vascular architecture of glioblastoma (GBM). The initial cohort included 300 pts treated at 7 European hospitals. Multiparametric images were processed by Oncohabitats (www.oncohabitats.upv.es) to obtain the cerebral blood volume (CBV) and cerebral blood flow (CBF) from 4 automatically delimited regions of interest (ROIs): high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrating peripherial edema (IPE), and vasogenic peripherial edema (VPE). Uniparametric Cox regression models and Kaplan-Meier analysis were developed to test pr…

research product

Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data

[EN] Deep neural networks (DNNs) have emerged as a state-of-the-art tool in very different research fields due to its adaptive power to the decision space since they do not presuppose any linear relationship between data. Some of the main disadvantages of these trending models are that the choice of the network underlying architecture profoundly influences the performance of the model and that the architecture design requires prior knowledge of the field of study. The use of questionnaires is hugely extended in social/behavioral sciences. The main contribution of this work is to automate the process of a DNN architecture design by using an agglomerative hierarchical algorithm that mimics th…

research product

Modelling of Magnetic Resonance Spectra Using Mixtures for Binned and Truncated Data

Magnetic Resonance Spectroscopy (MRS) provides the biochemical composition of a tissue under study. This information is useful for the in-vivo diagnosis of brain tumours. Prior knowledge of the relative position of the organic compound contributions in the MRS suggests the development of a probabilistic mixture model and its EM-based Maximum Likelihood Estimation for binned and truncated data. Experiments for characterizing and classifying Short Time Echo (STE) spectra from brain tumours are reported.

research product

Ranking of Brain Tumour Classifiers Using a Bayesian Approach

This study presents a ranking for classifers using a Bayesian perspective. This ranking framework is able to evaluate the performance of the models to be compared when they are inferred from different sets of data. It also takes into account the performance obtained on samples not used during the training of the classifiers. Besides, this ranking assigns a prior to each model based on a measure of similarity of the training data to a test case. An evaluation consisting of ranking brain tumour classifiers is presented. These multilayer perceptron classifiers are trained with 1H magnetic resonance spectroscopy (MRS) signals following a multiproject multicenter evaluation approach. We demonstr…

research product

Sparse Manifold Clustering and Embedding to discriminate gene expression profiles of glioblastoma and meningioma tumors.

Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In this work, SMCE algorithm is applied to the differential discrimination of Glioblastoma and Meningioma Tumors by means of their Gene Expression Profiles. Our purpose was to evaluate the robustness of this nonlinear manifold to classify gene expression profiles, characterized by the high-dimensionality of their representations and the low discrimination power of most of the genes. For this objective, we used SMCE to reduce the dimensionality of a preprocessed dataset of 35 single…

research product

Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs.

Background: Palliative care (PC) has demonstrated benefits for life-limiting illnesses. Cancer patients have mainly accessed these services, but there is growing consensus about the importance of promoting access for patients with non-malignant disease. Bad survival prognosis and patient9s frailty are usual dimensions to decide PC inclusion. Objectives: The main aim of this work is to design and evaluate three quantitative models based on machine learning approaches to predict frailty and mortality on older patients in the context of supporting palliative care decision making: one-year mortality, survival regression and one-year frailty classification. Methods: The dataset used in this stud…

research product

Usability and acceptability assessment of an empathic virtual agent to prevent major depression

In Human-Computer Interaction, the adaptation of the content and the way of how this content is communicated to the users in interactive sessions is a critical issue to promote the acceptability and usability of any computational system. We present a user-adapted interactive platform to identify and provide an early intervention for symptoms of depression and suicide. In particular, we describe the work performed to assess users' system acceptability and usability. An empathic Virtual Agent is the main interface with the user, and it has been designed to generate the appropriate dialogues and emotions during the interactions according to the detected user's specific needs. This personalizat…

research product

Incremental Gaussian Discriminant Analysis based on Graybill and Deal weighted combination of estimators for brain tumour diagnosis

In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning stops once this set has been processed. Training these classifiers requires a representative amount of data, but the gathering, preprocess, and validation of samples is expensive and time-consuming. Therefore, for a classical, non-incremental approach to ML, it is necessary to wait long enough to collect all the required data. In contrast, an incremental learning approach may allow us to build an initial classifier with a smaller number of samples and update it incrementally…

research product

Responsive and Minimalist App Based on Explainable AI to Assess Palliative Care Needs during Bedside Consultations on Older Patients

[EN] Palliative care is an alternative to standard care for gravely ill patients that has demonstrated many clinical benefits in cost-effective interventions. It is expected to grow in demand soon, so it is necessary to detect those patients who may benefit from these programs using a personalised objective criterion at the correct time. Our goal was to develop a responsive and minimalist web application embedding a 1-year mortality explainable predictive model to assess palliative care at bedside consultation. A 1-year mortality predictive model has been trained. We ranked the input variables and evaluated models with an increasing number of variables. We selected the model with the seven …

research product

Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy

[EN] Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004-2009), which builds upon previous expertise from the INTERPRET project (2000-2002) has allowed such an evaluation to take place. A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20-32 ms) and automatically pre-processed. Afterwards, the classifiers …

research product

Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years

[EN] Objective To evaluate the effects of Process-Reengineering interventions on the Electronic Health Records (EHR) of a hospital over 7 years. Materials and methods Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by processed variables such as the Charlson Comorbidity Index. Results Four Process-Reengineering interventions were detected by quantifiable effects on the EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during the next four months, (2) th…

research product

Subgrouping factors influencing migraine intensity in women: A semi-automatic methodology based on machine learning and information geometry

[EN] Background Migraine is a heterogeneous condition with multiple clinical manifestations. Machine learning algorithms permit the identification of population groups, providing analytical advantages over other modeling techniques. Objective The aim of this study was to analyze critical features that permit the differentiation of subgroups of patients with migraine according to the intensity and frequency of attacks by using machine learning algorithms. Methods Sixty-seven women with migraine participated. Clinical features of migraine, related disability (Migraine Disability Assessment Scale), anxiety/depressive levels (Hospital Anxiety and Depression Scale), anxiety state/trait levels (S…

research product

EHRtemporalVariability: delineating temporal dataset shifts in electronic health records

AbstractBackgroundTemporal variability in healthcare processes or protocols is intrinsic to medicine. Such variability can potentially introduce dataset shifts, a data quality issue when reusing electronic health records (EHRs) for secondary purposes. Temporal dataset shifts can present as trends, abrupt or seasonal changes in the statistical distributions of data over time, being particularly complex to address in multi-modal and highly coded data. These changes, if not delineated, can harm population and data-driven research, such as machine learning. Given that biomedical research repositories are increasingly being populated with large historical data from EHRs, there is a need for spec…

research product

Case Management for Patients with Complex Multimorbidity: Development and Validation of a Coordinated Intervention between Primary and Hospital Care

In the past few years, healthcare systems have been facing a growing demand related to the high prevalence of chronic diseases. Case management programs have emerged as an integrated care approach for the management of chronic disease. Nevertheless, there is little scientific evidence on the impact of using a case management program for patients with complex multimorbidity regarding hospital resource utilisation. We evaluated an integrated case management intervention set up by community-based care at outpatient clinics with nurse case managers from a telemedicine unit. The hypothesis to be tested was whether improved continuity of care resulting from the integration of community-based and …

research product

Accurate classification of childhood brain tumours by in vivo H-1 MRS - A multi-centre study

Aims: To evaluate the accuracy of single-voxel Magnetic Resonance Spectroscopy (1H-MRS) as a non-invasive diagnostic aid for pediatric brain tumours in a multi-national study. Our hypotheses are (1) that automated classification based on 1H-MRS provides an accurate non-invasive diagnosis in multi-centre datasets and (2) using a protocol which increases the metabolite information improves the diagnostic accuracy. Methods: 78 patients under 16 years old with histologically proven brain tumours from 10 international centres were investigated. Discrimination of 29 medulloblastomas, 11 ependymomas and 38 pilocytic astrocytomas was evaluated. Single-voxel MRS was undertaken prior to diagnosis (1.…

research product

Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study

Background Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). Purpose To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. Study Type Multicenter retrospective study. Population In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 c…

research product

Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001–2015)

[EN] Objectives To demonstrate how data-driven variability methods can be used to identify changes in disease recording in two English electronic health records databases between 2001 and 2015. Design Repeated cross-sectional analysis that applied data-driven temporal variability methods to assess month-by-month changes in routinely collected medical data. A measure of difference between months was calculated based on joint distributions of age, gender, socioeconomic status and recorded cardiovascular diseases. Distances between months were used to identify temporal trends in data recording. Setting 400 English primary care practices from the Clinical Practice Research Datalink (CPRD GOLD) …

research product

A happiness degree predictor using the conceptual data structure for deep learning architectures

Abstract Background and Objective: Happiness is a universal fundamental human goal. Since the emergence of Positive Psychology, a major focus in psychological research has been to study the role of certain factors in the prediction of happiness. The conventional methodologies are based on linear relationships, such as the commonly used Multivariate Linear Regression (MLR), which may suffer from the lack of representative capacity to the varied psychological features. Using Deep Neural Networks (DNN), we define a Happiness Degree Predictor (H-DP) based on the answers to five psychometric standardized questionnaires. Methods: A Data-Structure driven architecture for DNNs (D-SDNN) is proposed …

research product

Higher vascularity at infiltrated peripheral edema differentiates proneural glioblastoma subtype

[EN] Background and purpose Genetic classifications are crucial for understanding the heterogeneity of glioblastoma. Recently, perfusion MRI techniques have demonstrated associations molecular alterations. In this work, we investigated whether perfusion markers within infiltrated peripheral edema were associated with proneural, mesenchymal, classical and neural subtypes. Materials and methods ONCOhabitats open web services were used to obtain the cerebral blood volume at the infiltrated peripheral edema for MRI studies of 50 glioblastoma patients from The Cancer Imaging Archive: TCGA-GBM. ANOVA and Kruskal-Wallis tests were carried out in order to assess the association between vascular fea…

research product