0000000000266908

AUTHOR

Pasquale Candito

Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems

We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…

research product

Three solutions for a two-point boundary value problem with the prescribed mean curvature equation

The existence of at least three classical solutions for a parametric ordinary Dirichlet problem involving the mean curvature operator are established. In particular, a variational approach is proposed and the main results are obtained simply requiring the sublinearity at zero of the considered nonlinearity.

research product

Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero

Abstract We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ( ( a , 2 ) -type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.

research product

Multiple solutions for quasilinear elliptic problems via critical points in open sublevels and truncation principles

Abstract We study a quasilinear elliptic problem depending on a parameter λ of the form − Δ p u = λ f ( u ) in  Ω , u = 0 on  ∂ Ω . We present a novel variational approach that allows us to obtain multiplicity, regularity and a priori estimate of solutions by assuming certain growth and sign conditions on f prescribed only near zero. More precisely, we describe an interval of parameters λ for which the problem under consideration admits at least three nontrivial solutions: two extremal constant-sign solutions and one sign-changing solution. Our approach is based on an abstract localization principle of critical points of functionals of the form E = Φ − λ Ψ on open sublevels Φ − 1 ( ] − ∞ , …

research product

Nonlinear elliptic equations with asymmetric asymptotic behavior at $pminfty$

We consider a nonlinear, nonhomogeneous Dirichlet problem with reaction which is asymptotically superlinear at $+infty$ and sublinear at $-infty$. Using minimax methods together with suitable truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions one of which is negative.

research product

Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian

Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.

research product

Existence of two solutions for singular Φ-Laplacian problems

AbstractExistence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by theΦ\Phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. GlobalC1,τ{C}^{1,\tau }regularity of solutions is also investigated, chiefly viaa prioriestimates and perturbation techniques.

research product

Nonlinear nonhomogeneous Neumann eigenvalue problems

We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator with a reaction which is $(p-1)$-superlinear near $\pm\infty$ and exhibits concave terms near zero. We show that for all small values of the parameter, the problem has at least five solutions, four of constant sign and the fifth nodal. We also show the existence of extremal constant sign solutions.

research product

Positive solutions of Dirichlet and homoclinic type for a class of singular equations

Abstract We study a nonlinear singular boundary value problem and prove that, depending on a relationship between exponents of power terms, the problem has either solutions of Dirichlet type or homoclinic solutions. We make use of shooting techniques and lower and upper solutions.

research product

Existence Results for Periodic Boundary Value Problems with a Convenction Term

By using an abstract coincidence point theorem for sequentially weakly continuous maps the existence of at least one positive solution is obtained for a periodic second order boundary value problem with a reaction term involving the derivative \(u'\) of the solution u: the so called convention term. As a consequence of the main result also the existence of at least one positive solution is obtained for a parameter-depending problem.

research product

Singular quasilinear elliptic systems involving gradient terms

Abstract In this paper we establish the existence of at least one smooth positive solution for a singular quasilinear elliptic system involving gradient terms. The approach combines the sub-supersolutions method and Schauder’s fixed point theorem.

research product

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

research product

Bounded Palais–Smale sequences for non-differentiable functions

The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.

research product

An existence result for a Neumann problem

The main result of this paper deals with the existence of at least one positive solution for a second order Neumann boundary value problem. Such a result is obtained by using an abstract coincidence point theorem that allows to get our conclusion under non standard conditions on the nonlinearity.

research product

Preface

This issue of Discrete and Continuous Dynamical Systems-Series S focuses on the qualitative analysis of some concrete nonlinear problems, e.g., ordinary, partial differential equations, systems and inclusions. The ten contributions collected here give an overview on some very recent results on the existence, multiplicity and sign information of the solutions of a wide range of nonlinear differential problems involving different boundary value conditions and operators in divergence form. In our opinion, the synergy pointed out here between the classical nonlinear analysis methods, like the critical point theory, sub-super solutions methods, truncation and comparison techniques, Morse theory,…

research product