0000000000266957
AUTHOR
Andreas Ekström
Bigger is not better: cortisol-induced cardiac growth and dysfunction in salmonids
This is a Published Manuscript of an article published by Company of Biologists in Journal of Experimental Biology, available online: http://www.biologists.com/ Stress and elevated cortisol levels are associated with pathological heart growth and cardiovascular disease in humans and other mammals. We recently established a link between heritable variation in post-stress cortisol production and cardiac growth also in salmonid fish. A conserved stimulatory effect of the otherwise catabolic steroid hormone cortisol is likely implied, but has to date not been established experimentally. Furthermore, whereas cardiac growth is associated with failure of the mammalian heart, pathological cardiac h…
Effective-field-theory predictions of the muon-deuteron capture rate
We quantify the theoretical uncertainties of chiral effective-field-theory predictions of the muon-deuteron capture rate. Theoretical error estimates of this low-energy process is important for a reliable interpretation of forthcoming experimental results by the MuSun collaboration. Specifically, we estimate the three dominant sources of uncertainties that impact theoretical calculations of this rate: those resulting from uncertainties in the pool of fit data used to constrain the coupling constants in the nuclear interaction, those due to the truncation of the effective field theory, and those due to uncertainties in the axial radius of the nucleon. For the capture rate into the ${}^1S_0$ …
Sub-Barrier Coulomb Excitation ofSn110and Its Implications for theSn100Shell Closure
The first excited 2(+) state of the unstable isotope Sn-110 has been studied in safe Coulomb excitation at 2.82 MeV/u using the MINIBALL array at the REX-ISOLDE post accelerator at CERN. This is the first measurement of the reduced transition probability of this state using this method for a neutron deficient Sn isotope. The strength of the approach lies in the excellent peak-to-background ratio that is achieved. The extracted reduced transition probability, B(E2 : 0(+) -> 2(+)) 0.220 +/- 0.022e(2) b(2), strengthens the observation of the evolution of the B(E2) values of neutron deficient Sn isotopes that was observed recently in intermediate-energy Coulomb excitation of Sn-108. It implies …
Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the21+State inZn80
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a g…
Collectivity in the light radon nuclei measured directly via Coulomb excitation
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purpose: Evidence for shape coexistence has been inferred from α-decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of Rn202 and Rn…
Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32
Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…
The Miniball spectrometer
The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are hi…
The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties
To shed light on the deuteron radius puzzle we analyze the theoretical uncertainties of the nuclear structure corrections to the Lamb shift in muonic deuterium. We find that the discrepancy between the calculated two-photon exchange correction and the corresponding experimentally inferred value by Pohl et al. [1] remain. The present result is consistent with our previous estimate, although the discrepancy is reduced from 2.6 $\sigma$ to 2 $\sigma$. The error analysis includes statistic as well as systematic uncertainties stemming from the use of nucleon-nucleon interactions derived from chiral effective field theory at various orders. We therefore conclude that nuclear theory uncertainty is…
A Statistical Analysis of the Nuclear Structure Uncertainties in $$\mu $$D
The charge radius of the deuteron (D), was recently determined to three times the precision compared with previous measurements using the measured Lamb shift in muonic deuterium (\(\mu \)D). However, the \(\mu \)D value is 5.6 \(\sigma \) smaller than the world averaged CODATA-2014 value (Pohl R et al. (2016) Science 353:669 [1]). To shed light on this discrepancy we analyze the uncertainties of the nuclear structure calculations of the Lamb shift in \(\mu \)D and conclude that nuclear theory uncertainty is not likely to be the source of the discrepancy.
Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of Hg-182, Hg-184, Hg-186 and Hg-188
The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of $ 0^{+}_{1,2}$01,2+, $ 2^{+}_{1,2}$21,2+and $ 4^{+}_{1}$41+states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate…
Unexpectedly large charge radii of neutron-rich calcium isotopes
Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…