0000000000266970

AUTHOR

Philippe Lalanne

Formation and properties of localized modes near photonic band edges

International audience

research product

Near-field spectroscopy of low-loss waveguide integrated microcavities

International audience; A scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics.

research product

Modelling leaky photonic wires: a mode solver comparison

We present results from a mode solver comparison held within the framework of the European COST P11 project. The structure modelled is a high-index contrast photonic wire in silicon-oninsulator subject to substrate leakage. The methods compared are both in-house developed and commercial, and range from effective index and perturbation methods, over finite-element and finite-difference codes, beam propagation methods, to film mode matching methods and plane wave expansion methods.

research product

Nano-manipulation of confined electromagnetic fields with a near-field probe

International audience

research product

Influence of the filling factor on the spectral properties of plasmonic crystals

Plasmonics crystals (PCs) comprised of finite-size triangular lattices of gold bumps deposited on a gold thin film are studied by means of a near-field optical microscope. The plasmonic crystals fabricated by electron-beam lithography are illuminated by an incident surface plasmon polariton excited in the Kretschmann-Raether configuration at the gold/air thin-film interface for incident free-space wavelengths in the range $740--820\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. Based on the measurement of the surface plasmon polariton (SPP) damping distance in the crystals, the existence of a band gap for an incident SPP traveling along the two symmetry axes $\ensuremath{\Gamma}M$ and $\ensuremath…

research product

A near-field actuated optical nanocavity

International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

research product