COMMENT TO LEHRMANN ET AL. NEW SECTIONS AND OBSERVATIONS FROM THE NANPANJIANG BASIN, SOUTH CHINA
In the study of Earth-surface environmental processes during the events associated with the Permian–Triassic boundary, a key issue is the nature of the latest Permian pre-extinction surface in shallow marine limestones in numerous sites, principally within the Tethyan realm. Sediments below this surface pre-date the extinction event, so that the limestones comprising these latest Permian facies contain diverse fossil remains of organisms that lived just before the extinction. At all reported sites, this surface is disconformably overlain by post-extinction sediments, which contain microbialites in many places, particularly in Tethys. The nature of the youngest pre-extinction surface remains…
Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis
Permian-Triassic boundary microbialites (PTBMs) are thin (0.05-15 m) carbonates formed after the end-Permian mass extinction. They comprise Renalcis-group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low-latitude shallow-marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post-extinction seawater carbonate satur…
Diagenesis of clay minerals and K-bentonites in Late Permian/Early Triassic sediments of the Sichuan Basin (Chaotian section, Central China).
10 pages; International audience; Detailed clay mineralogical analyses were carried out on Late Permian/Early Triassic carbonate sediments exposed on the Chaotian section (Sichuan Basin, Central China). The clay assemblages are dominantly composed of illite in platform carbonates and clay seams, and illite-smectite mixed-layers (I/S) in tuff layers (K-bentonites) intercalated in the carbonate succession. Detrital and authigenic volcanogenic clay minerals have been partially replaced through illitisation processes during burial, raising questions about diagenetic effects. The precise determination of I/S occurring in K-bentonites shows that the sediments reached a temperature of about 180 °C…
In the aftermath of the end-Permian extinction: the microbialite refuge?
7 pages; International audience; We present the first study of micro-crustaceans (ostracods) associated with microbial crusts in the aftermath of the most devastating extinction, the end-Permian extinction (EPE). These post-extinction microbialites dominated shallow shelf marine environments and were traditionally considered as devoid of any associated fauna. We present a micro-palaeontological analysis of a large record from microbial and non-microbial settings following the EPE. This dataset documents the proliferation of ostracods strictly associated with microbialites. Based on the diet of extant ostracods and uniformitarianism, we propose that the abundant microbes in the mats served a…
Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?
International audience; Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO 2 , raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2) Fossils…