0000000000267057

AUTHOR

Pablo Blanc

showing 6 related works from this author

Asymptotic mean value formulas for parabolic nonlinear equations

2021

In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed

osittaisdifferentiaaliyhtälötasymptotic mean value formulasparabolic nonlinear equationsMathematics - Analysis of PDEsviscosity solutionsGeneral MathematicsFOS: MathematicsMathematics::Analysis of PDEsparabolic Monge–Ampère equationsAnalysis of PDEs (math.AP)
researchProduct

Asymptotic Mean-Value Formulas for Solutions of General Second-Order Elliptic Equations

2022

Abstract We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. The families of equations that we consider include well-known operators such as Pucci, Issacs, and k-Hessian operators.

osittaisdifferentiaaliyhtälötviscosity solutionsMathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsStatistical and Nonlinear Physicsmean-value formulasIssacs equationk-Hessian equationAnalysis of PDEs (math.AP)
researchProduct

Asymptotic $C^{1,γ}$-regularity for value functions to uniformly elliptic dynamic programming principles

2022

In this paper we prove an asymptotic C1,γ-estimate for value functions of stochastic processes related to uniformly elliptic dynamic programming principles. As an application, this allows us to pass to the limit with a discrete gradient and then to obtain a C1,γ-result for the corresponding limit PDE. peerReviewed

osittaisdifferentiaaliyhtälötProbability (math.PR)FOS: Mathematicspeliteoriastokastiset prosessitAnalysis of PDEs (math.AP)
researchProduct

Hölder regularity for stochastic processes with bounded and measurable increments

2022

We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov-Safonov regularity result in PDEs. However, the discrete step size $\varepsilon$ has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.

todennäköisyyslaskentamatematiikkaApplied Mathematicsp-harmoniousProbability (math.PR)tug-of-war gamesstochastic processdynamic programming principlelocal Hölder estimatesFOS: Mathematicsequations in nondivergence formp-Laplace35B65 35J15 60H30 60J10 91A50Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)stokastiset prosessit
researchProduct

Local regularity estimates for general discrete dynamic programming equations

2022

We obtain an analytic proof for asymptotic H\"older estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for discrete extremal operators. Thus the results cover a quite general class of equations.

local Hölder estimateosittaisdifferentiaaliyhtälötABP-estimateApplied MathematicsGeneral Mathematicsp-LaplacianMathematics::Analysis of PDEs35B65 35J15 35J92 91A50elliptic non-divergence form partial differential equation with bounded and measurable coefficientsdynamic programming principleMathematics - Analysis of PDEsHarnack's inequalitytug-of-war with noiseFOS: MathematicsPucci extremal operatorpeliteoriaepäyhtälötAnalysis of PDEs (math.AP)
researchProduct

Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian

2021

AbstractWe prove a local Hölder estimate for any exponent $0<\delta <\frac {1}{2}$ 0 < δ < 1 2 for solutions of the dynamic programming principle $$ \begin{array}{@{}rcl@{}} u^{\varepsilon} (x) = \sum\limits_{j=1}^{n} \alpha_{j} \underset{\dim(S)=j}{\inf} \underset{|v|=1}{\underset{v\in S}{\sup}} \frac{u^{\varepsilon} (x + \varepsilon v) + u^{\varepsilon} (x - \varepsilon v)}{2} \end{array} $$ u ε ( x ) = ∑ j = 1 n α j inf dim ( S ) = j sup v ∈ S | v | = 1 u ε ( x + ε v ) + u ε ( x − ε v ) 2 with α1,αn > 0 and α2,⋯ ,αn− 1 ≥ 0. The proof is based on a new coupling idea from game theory. As an application, we get the same regularity estimate for viscosity solutions of the PDE $…

viscosity solutionosittaisdifferentiaaliyhtälötMathematics::Functional AnalysisStatistics::Theory91A05 91A15 35D40 35B65Mathematics::Dynamical Systemsholder estimateMathematics::Analysis of PDEsmatemaattinen optimointifully nonlinear PDEsdynamic programming principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: Mathematicspeliteoriaeigenvalue of the HessianAnalysisAnalysis of PDEs (math.AP)estimointi
researchProduct