Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating
cited By 23; The underlying physics of intermediate-depth earthquakes have been an enigmatic topic; several studies support either thermal runaway or dehydration reactions as viable mechanisms for their generation. Here we present fully coupled thermomechanical models that investigate the impact of grain size evolution and energy feedbacks on shear zone and pseudotachylite formation. Our results indicate that grain size reduction weakens the rock prior to thermal runaway and significantly decreases the critical stress needed for thermal runaway, making it more likely to result in intermediate-depth earthquakes at shallower depths. Furthermore, grain size is reduced in and around the shear z…